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ABSTRACT

Motivation: Differential coexpression is a change in coexpression
between genes that may reflect ‘rewiring’ of transcriptional networks.
It has previously been hypothesized that such changes might be
occurring over time in the lifespan of an organism (aging). While
both differential expression and coexpression of genes have been
previously studied in aging, differential coexpression has not. Gene-
ralizing differential coexpression analysis to many time points
presents a methodological challenge. Here we introduce a method
for analyzing changes in coexpression across ordered groups (e.g.,
over time) and test its usefulness.

Results: Our method is based on the use of the wavelet transform
to efficiently represent changes in coexpression at multiple time
scales. We used published microarray studies categorized by age to
test the methodology. We validated the methodology by testing our
ability to reconstruct Gene Ontology (GO) categories using our
measure of differential coexpression and compared this result to
using coexpression alone. Our method allows significant improve-
ment in characterizing these groups of genes. In addition, we found
that our method finds more significant changes in gene relationships
compared to several other methods of expressing temporal relation-
ships between genes, such as coexpression over time.
Supplementary data: http://www.chibi.ubc.ca/diffExAge

Contact: paul@bioinformatics.ubc.ca

1 INTRODUCTION

Differential coexpression is defined as a change in the correlation
relationships between genes. It is a natural extension of the concept
of ‘guilt by association’, in which functional relationships between
genes are thought to be reflected in coexpression relationships
(Eisen et al,, 1998, Lee et al. 2004). Differential coexpression po-
sits that changes in coexpression can be biologically relevant, and
occur with or without changes in gene expression levels (differen-
tial expression). We think of differential coexpression as potential-
ly revealing ‘rewiring’ of gene network, reflecting dynamic
changes in the regulatory relationships between genes which can
then be ‘read out’ at the level of transcription. Because of the po-
tential importance of network rewiring, differential coexpression
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could be useful for uncovering molecular mechanisms of normal
processes such as development and aging as well as disease
processes. A schematic outlining the features of differential coex-
pression is provided in Figure 1.

Differential coexpression has previously been studied primarily
in the context of changes in coexpression between two groups
(Watson, 2006, Choi et al., 2005, Kostka and Spang, 2004). How-
ever, no method to handle ordered groups, such as over age or
time, has been proposed.

The current study was motivated by our interest in studying
human aging. For our purposes, we take ‘aging’ to include both
developmental and normal senescent changes. In searching for
biomarkers for ageing it has been usual to look for differential
expression over time (Zahn et al., 2007, Lee et al., 1999). The
equivalent task in differential coexpression analysis would com-
pare coexpression across time. Previous expression profiling stu-
dies have demonstrated that the expression patterns of age-
regulated genes are indicators for a functional measure of ageing in
humans (Zahn et al., 2006, Rodwell et al., 2004). Because a large
array of functional changes occur over age, age-related change
may be a rich resource for differential coexpression — many linked
changes in functional relationships or rewiring of transcriptional
networks.

The life-long and complex time course of aging means both
that there are many potential natural divisions to group different
ages together. One approach to analyzing changes would be to take
a derivative of gene coexpression across time (over increasing age
groups), thus providing the differential coexpression between each
age group and the next. At the extreme one might consider com-
paring just two groups (e.g., ‘old’ and ‘young’). However, the
derivative or two-group comparison will fail to detect gradual
changes which can only be characterized over the long term.
Another possible approach to characterize multiple time points
would be to compare every age group to every other, but this is
highly redundant and ignores the temporal relationship between
data points.

A good method for differential coexpression should have the fol-
lowing properties:

(1) It would characterize the change in coexpression at each
time.
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(2) It would characterize the change in coexpression over the
long term and the short term.

(3) It would form a basis set for the temporal data.

For two groups of data, it would reduce to conventional differential
coexpression (i.e. a difference between gene correlations).

These three properties suggest we require a transformation in-
corporating both changes in scale and timing. Broadly, this defines
a group of transformations of (typically) temporal data known as
time-frequency transforms, the best-known of which is the spec-
trogram (Cohen, 1989), effectively a collection of bandpass filters
plotted along the same axis. Thus, this is a characterization both of
the change in time and scale of activity. In the context of aging,
this would represent differential coexpression between both fine
time points, old vs. very old, for example, and larger scales, post-
adult vs. pre-adult, for example.

A more recent innovation which exploits the fact that large
scale temporal processes are often themselves not changing rapidly
is the wavelet transform. Wavelets are a popular technique to ana-
lyze temporal data in many fields and has previously been explored
for use in temporal gene expression data (Song et al., 2007). The
wavelet transform uses a window that varies in frequency resolu-
tion, so that at low frequencies, the frequency resolution is very
good, and at high frequencies, the temporal resolution is very good
(Daubechies, 1990). Typically the temporal data for this analysis
consists of enough time points that wavelets are useful to summar-
ize activity at multiple scales and times. In our case, the use of
wavelets arises not just as a commonly useful way of representing
data, but as a generalization of the definition of differential coex-
pression to multiple and continuous conditions (time).

Thus the wavelet transform of the correlation between two
genes provides differential coexpression data over time at multiple
scales. In order to reduce to conventional two-group differential
coexpression, a wavelet transform of age-specific coexpression
data should be seen as taking the difference between groups. This
corresponds to the first proposed wavelet transform, the Haar
wavelet transform (Haar, 1909).

In this study we use the Gemma database of publicly-available
microarray studies (Hamer et al., submitted,;
http://www.chibi.ubc.ca/Gemma) for a meta-analysis of expression
patterns, as a proof of principle. We show that functionally related
genes tend to have similar differential coexpression values, indicat-
ing an expected common change in functional relationship over
time. We further demonstrate that differential coexpression data
allows similarly GO categorized genes to be grouped together with
significantly greater efficacy than coexpression alone. Finally, we
show that the Haar wavelet basis is more informative than using
the ordered coexpression values basis or a discrete derivative basis
(differences between successive age groupings). Because ageing is
a process so strongly characterized by changes in function, these
techniques developed to characterize ageing may also shed light on
how ageing changes function and thus how dysfunction occurs.
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Figure 1. Schematic of differential coexpression. The left and right sides
of the figure correspond to two hypothetical experimental conditions. A.
Heatmap representation of expression levels of 20 genes in 10 samples per
condition; lighter shades indicate higher relative expression. The correla-
tions among some genes changes, e.g. genes 16-18. B. Correlation matrix
heatmaps corresponding to the data in A. Light colors indicate higher cor-
relations. The changes in the position and size of the 'blocks' of highly
coexpressed genes changes between conditions. C. Coexpression networks
generated by thresholding the correlations between each pair of genes,
illustrating the concept of ‘rewiring’.
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2 METHODS

2.1  Data grouping and normalization

Human microarray studies from Gemma’s database were categorized by
their subject’s ages into the four groups; “prenatal”, “child/young adult” (0-
18 years), “adult” (19-54), and “older adult” (55+). Studies spanning more
than one adult grouping were categorized by whether their ages ranged
older or younger than adult. Thus a study overlapping adult and older
adult, for example, 50 to 100 years old, would be categorized within the
“older adult” category and similarly a study consisting of 10-20 would be
classified only as “child/young adult”. In this way, trends away from the
mean age are captured. It is important to note that the studies used were
not necessarily designed to study age effects, and include a variety of tis-
sues. The selection procedure yielded 8 to 13 studies for each age group
and 37 in all, encompassing 2803 individual microarrays (13 to 404 arrays
per study). Pearson correlations between pairs of genes were calculated for
each study. For genes annotated by Gemma as having multiple probes in a
given study, the correlations for the probes were averaged. Correlation
values between pairs of genes for each study were converted to standard
deviations from 0 in the correlation distribution as determined by the theo-
retical standard deviation from 0 of the Fisher transformation z = 0.5 log
((1+1)/(2-r)) (Fisher, 1915), and averaged across common data groupings.

To allow the investigation of differential expression over age, we com-
puted a relative rank-based measure of expression level for each gene. Each
gene's expression level for each study was averaged across samples in each
study, converted into a rank with the study, and then averaged within each
age group.

2.2  Wavelet transform

For a time series, x(t), the continuous wavelet transform at scale a and time
t, W(a, t) is given by:

W(at) =+ [ xwg’ (£5) au Q)

where g is the mother wavelet function and g* its complex conjugate,
where g must satisfy certain constraints such as continuity, integrability,
square integrability, and admissibility (wavelike). In our case, the wavelet
is the step function, or Haar wavelet, g(x)=1 for 0>x>1/2, g(x)=-1 for
1/2>x>1, and g(x)=0 otherwise. The discrete wavelet transform is then an
implementation of the transform over discrete time points.

Over our four age groups (prenatal, child/young adult, adult, older
adult), the Haar basis consists of four values:

e  The averaged correlation between genes across all four time
points: (1/2, 1/2, 1/2, 1/2)

e  The averaged correlation difference pre-adult and post-adult:
(1/2, 112, -1/2, -1/2)

e The averaged correlation difference prenatal to child/young
adult: (1/sqrt(2), -1/sqrt(2), 0, 0)

e  The averaged correlation difference adult to older adult: (0, O,
1/sqrt(2),-1/sqrt(2))

The four wavelet differential coexpression values are the dot product
of these vectors with the age grouped expression data. The wavelet lifting
scheme was used to calculate the coefficients (Kaplan, 2002; Jense and
Cour-Harbo, 2001). Note that the first wavelet coefficient represents the
average coexpression across all ages. The remaining three coefficients
represent differential coexpression and no aspect of coexpression (since the
coefficients are orthogonal). Henceforth “differential coexpression coeffi-

cients” excludes the first coefficient. The variance of temporal coefficient
values across the experiments used was calculated.

We performed the Haar transform both on the averaged correlation be-
tween pairs of genes (as a time series across our age groups) as well as on
the averaged ranks of individual genes. Differential expression may be a
confound for differential coexpression so to ensure that the differential
coexpression findings may not be explained by simpler underlying changes,
genes exhibiting significant differential expression values at a given time
and scale (top 5% rank change) were removed. If a gene exhibited diffe-
rential expression for one coefficient, other values not exhibiting differen-
tial expression were retained. Following this procedure, 927 genes were
characterized as exhibiting differential expression for each coefficient and
removed from analysis for differential coexpression. This allows our analy-
sis to focus on genes which are relatively stable in expression level, but
which might exhibit changes in coexpression relationships with other
genes.

2.3  Validation

All Gene Ontology (GO) groups of genes containing 25-30 members
were chosen using the Gemma web services (see supplementary data). This
size range was chosen for computational tractability of cross-validation,
and to avoid using GO categories which overlap extensively. This generat-
ed 139 separate GO groups encompassing 2925 distinct genes out of a total
10764 covered by the GO categories.

We used these GO groups for validation of the differential coexpression
results. By an analogy with the use of coexpression to predict gene func-
tion, we propose that each gene within a given GO set might have a charac-
teristic differential coexpression relationship with genes inside the set and a
characteristic relationship with genes outside the set. For each gene inside
the set, gene B, the respective distributions of differential coexpression
coefficients can be calculated. An arbitrary gene, gene j, outside the set has
differential coexpression values with gene B that may also be calculated.
We may then ask if gene j's relationship with gene B resembles gene B's
relationship with other genes inside the set or with genes outside the set. As
a control, the same calculation was performed using the coefficient
representing coexpression.

A leave-one-out methodology was employed in the following fashion for
genes A-Z:

(1) The Gene A of genes A-Z was left out.

(2) For the first differential coexpression coefficient, the distribution of
differential coexpression coefficients between gene B and genes C-Z
was calculated.

(3) For each gene, gene j, not in the set B-Z, the first differential coex-
pression coefficient was calculated between gene B and gene j.

(4) The distribution of first differential coexpression coefficients be-
tween gene B and all genes not in C-Z or j was constructed.

(5) The odds ratio for the distributions in steps 3 and 4 was calculated
for the value between gene B and gene j.

(6) Steps 2-5 were repeated for genes C-Z and the geometric mean of the
coefficients taken.

(7) Steps 2-6 were repeated for each differential coexpression coefficient
and the geometric mean was taken.

(8) Steps 1-7 were repeated rotating through each gene in the set to gen-
erate receiver operator characteristic (ROC) curves.

An additional basis set of differential coexpression coefficients was gen-
erated as a comparison to the wavelet transform. The first coefficient re-
mained the first value in time, while the remaining coefficients were calcu-
lated by taking a discrete derivative, or difference between successive pairs
of values across time. This set will be referred to as the derivative set.
Conceptually this overlaps with the time basis 1% coefficient and the wave-
let 3, and 4™ coefficients, but lacks any scale variation, such as that found
in the wavelet second coefficient. Significant coefficients (p<0.05) were
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calculated for the direct time series coefficients, the wavelet coefficients,
and the derivative coefficients. The number of significant coefficients for
each gene pair was calculated.

A schematic example of the wavelet transform method is shown in Fig-
ure 2.
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Figure 2. Method schematic. A. An examples of coexpression data for one
pair of genes plotted across agre groups. B. The wavelet basis set is shown
summing to generate the original data points from A. The solid line is the
mean value, the dotted line shows the difference between the first half and
second half, and the dashed line shows the difference between first and
second groups then third and fourth groups. Each successively smaller
scale is graphed on top of the sum of previous scales, summing to the orig-
inal.

3 RESULTS

To test our approach, we analyzed differential coexpression across
human lifespan in a corpus of 37 expression studies (2803 individ-
ual microarrays in total). This produces 4 symmetric matrices of
18534 by 18534 genes with potential wavelet coefficient values,
consisting of coexpression or differential coexpression. Because
this a large and complex data set, important trends may exist out-
side of examining only the most statistically significant cases. Our
validation uses all the data; however, we have also constructed an
adjacency matrix consisting of the most significant gene-pairs
across all coefficients (p<0.01 and top 100 significance for at least
one gene with respect to the other). This produced 1585917 signif-
icant gene-pair relationships, available as supplementary data. The
focus of the remaining analysis presented in this paper is aimed at
evaluating the proposed approach. First, we explored whether dif-

ferential coexpression is relevant to gene function using an analy-
sis of Gene Ontology categories. Second, we compared our Haar-
wavelet transformation approach to one based on derivatives of
coexpression changes. An analysis of the biological relevance of
the age-related changes we found will be described elsewhere.

3.1 Gene function is reflected in differential coexpres-
sion patterns

Previous studies have found coexpression to be an indicator of
functional relationships (Lee et al., 2004). Aging is a process cha-
racterized by a change in functional relationships (Zahn et al.,
2007). Thus we hypothesized that aging may be a process in which
differential coexpression is significant. Because ageing is a wide-
spread process, we hypothesized that many functional categories
may exhibit significant differential coexpression. GO sets are func-
tionally categorized genes and thus they serve as a test set to ob-
serve whether differential coexpression is a useful tool to charac-
terize gene function over time.

Results of leave-one-out validation using the GO sets (see Me-
thods) are shown in Figure 3. Given a training set (a GO group
minus one in-group gene, rotated through each in-group gene)
classification of a testing set (all genes outside the GO group plus
one in-group gene, rotated through each in-group gene) was per-
formed. Note that genes exhibiting strong differential expression
across age were removed to ensure that changes in coexpression
are not better explained by differential expression of the same
genes (Li et al., 2004). The area under the curve (AUC) for the
ROC curve is 0.77 with a standard deviation 0.05 across the GO
groups. The AUC of 0.77 represents the probability of correctly
assigning a higher score to a random in-group gene over a random
out-group gene, given the two. As a control we also attempted to
classify using coexpression alone and obtained an AUC of 0.65

True positive rate
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Figure 3. Functional categories of genes can be predicted by differential
coexpression. The thick line curve shows the result of leave one out valida-
tion to generate an ROC curve for reconstructing GO categories containing
25-30 genes using their differential coexpression values (AUC 0.77). The
thin line curve show the ROC curve if instead of differential coexpression
values, coexpression values alone are used (AUC 0.65). The dotted line
curve shows the result-ing ROC curve if in place of GO sets, random sets
with 25-30 genes are used (AUC 0.49).
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(Figure 3). Random sets of genes (of the same size) generated the
expected identity line with an AUC of ~0.5 (Figure 3). Using
coexpression in conjunction with differential coexpression does
improve performance further, although slightly (AUC of 0.79,
Figure 3), suggesting that coexpression is not captured entirely by
differential coexpression.

3.2 Comparison to derivative basis set

The wavelet coefficients map naturally onto conventional defini-
tions of differential coexpression, but there are other possible map-
pings. One such would be the discrete derivative, starting with the
first time point's expression level and then subsequent coefficients
reflecting changes from the previous value. It might also be rea-
sonable to question whether changes in coexpression are helpful to
consider at all, rather than simply independently observing each
time point for coexpression. In that case, the natural basis set
would be to use the time basis set (age groups 1-4) of coexpression
data directly. Each pair of genes has 4 coefficients associated with
it. There is little point to this if significance in one coefficient im-
plies significance in another.

Figure 4 shows the fraction of significant coefficients sharing
other significant coefficients for the same gene pair, and the num-
ber of common coefficients (with 1 indicating that the gene pair
with that significant coefficient had only one such). The wavelet
coefficient performs better, with 45% of its significant coefficients
being unique in that gene pair, than either temporal coefficients
with 35% such or derivative coefficients with 41% — more of the
wavelet coefficient's significant values are independent across
values.

0.9 T T T

08

Fraction

=
i

=)

(=]

IIH M

Number of significant coefficients for a given gene pair

Figure 4. The percentage of significant coefficients in a basis set
representing age for a gene pair in which other coefficients are also signifi-
cant. The x axis shows the number of significant coefficients, e.g., the
values at 1 indicate that the given percentage of coefficients are found in
gene pairs with no other significant coefficients. Black shows the result of
random data uncorrelated across coefficients; dark grey, the result of wave-
let coefficients; light grey, the result of derivative coefficients; and white,
the result of the age groups directly.

4 DISCUSSION

These results suggest that wavelet analysis of differential coex-
pression is a useful tocl for capturing functional relationships be-
tween genes as they change over ordered sets of conditions. In
addition to their good performance compared to a derivate ap-
proach, wavelets had an additional feature making them attractive
for meta-analysis, in that individual studies with samples contain-
ing multiple ‘ages’ could be combined and analyzed at multiple
scales. For example, if a study covered the age groups prenatal and
child/young adult, it could be included in both, ensuring it contri-
buted to only the first and second wavelet coefficients, as appro-
priate for the scale at which the study was performed.

In a sense our use of the wavelet transform is unconventional
because we have only four time points, in contrast to more typical
applications where temporal resolution is much higher. However,
we think of the wavelet transformation as a useful basis set with a
biological underpinning, and which has a convenient generaliza-
tion. Thus the wavelet method could equally well be applied to
studies specifically geared toward the analysis of data with differ-
ent or finer temporal resolution, or to other ordered conditions.

4.1 Differential coexpression over time using wavelets

The inferior performance of the temporal coefficient method was
not surprising, since the total coexpression effects are not an inde-
pendent coefficient and dominate significance measures. That is, if
a gene pair is highly coexpressed, even if it is also highly variable
over age (yielding large coefficients in the other two bases), it is
still quite likely to remain highly coexpressed at all ages. The infe-
rior performance of the derivative basis suggests that longer scale
dynamics are relevant to expression changes with age. This would
seem consistent with the proposal of Barker et al. (1989) that fetal
programming can play a significant role in determining factors
affecting longevity (Gluckman et al., 2005).

The difference between derivative and wavelet bases may
become more important with greater resolution age categories. The
temporal basis set had an average standard deviation of 0.22 be-
tween experiments compared to the normalized 1.0 between mean
gene pair values. Some part of this is likely due to overlapping age
categories, and while this is large enough to substantially effect the
ordering of many differential coexpression values near the mean, it
is not large enough to alter extreme values. Because the temporal
basis values were then transformed to constitute the derivative and
wavelet bases, the significance values are stable with respect to
experiment variability. This has bearing on the success of the GO
validation since the distinction at each step was between potential-
ly extreme or unusual (in-group) values and necessarily baseline
(out-group) values.

One possible concern with our study is that we have mixed
data sets from various tissues. The precise tissue for prenatal vs.
adult, for example, may differ. Likewise there are study parameters
(such as population type) that might vary with age in studies. It
could then be argued that differential coexpression across age that
we see is simply a proxy measure for differential coexpression
between across tissue type. However, this is not consistent with the
superior performance of the wavelet coefficients compared to the
other basis. The wavelet coefficients average data at a larger scale,
thus diminishing tissue effects. Were this effect dominant, treating
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each age group independently (as attempted in the temporal basis)
instead of as part of an ordered group would be most useful.

A final possibility in lieu of the suggested bases would be to
determine a good basis post hoc, as is effectively done in any di-
mension reduction. This presents a number of problems of its own.
First, it will vary from dataset to dataset and introduce new norma-
lization difficulties. The variation from dataset to dataset would
also reduce the general applicability of any results since any past
findings would have to be reinterpreted in the context of whatever
basis set is calculated for the new work. In addition, there would be
no reason to see the new basis set as a form of differential coex-
pression precisely since it is unlikely that a single component
would end up wholly representing coexpression (thereby removing
it from the others, as was the case with the wavelet basis). More
broadly, it is desirable that the method for producing the basis set
be recursive in the sense that the addition of more age groupings
should leave previous findings interpretable. Doubling the resolu-
tion (or duration) is naturally handled by the wavelet basis without
altering the meaning of previous findings. This would not be so of
a post hoc basis, which could change dramatically through the
addition of new groupings, even for the same data. Finally, a prin-
cipled transformation of the data can be geared to offer value as an
interpretive tool, as opposed to a purely methodological tool.

4.2  Biological interpretation of the wavelet approach

Our data covers a range of age categories including both de-
velopment and senescence. Two fundamental theories of senes-
cence are Williams (1957) theory of antagonistic pleiotropy and
Medawar's (1946) theory of mutation accumulation. These theories
present an interesting interpretation in the context of our differen-
tial coexpression coefficients. Antagonistic pleiotropy posits a
long-scale connection between early states and late states, in which
a characteristic useful in youth is negative later (e.g., Rodier et al.,
2007). A changing functional role over age in this way would be a
good candidate to find differential coexpression, and, in particular,
we would expect such differential coexpression to be present in the
coefficient at the appropriate time-scale. That is, our second wave-
let coefficient (representing long term differential coexpression)
may be thought of as mapping onto youthful tradeoff theories of
ageing. Mutation accumulation, on the other hand, maps more
readily onto our last wavelet coefficient, representing (relatively)
short term and late stage changes in coexpression. The third wave-
let coefficient maps most readily onto developmental change,
representing as it does, rapid and early changes in coexpression
which we interpret at rapid and early changes in function for de-
velopment. More specific mechanistic interpretations of function
and dysfunction over age also map more readily onto a wavelet
basis than others because they typically involve both a factor in
time and scale. As previously mentioned, Barker's theory of fetal
programming implies suggests a long term effect between early
states and late states. One well studied mechanism reviewed by
Maric (2007) involves fetal programming for high blood pressure.
Because the wavelet coefficients can capture both the scale and
timing of this event, they might serve to elucidate the unknown
genetic causes for the well characterized physiological changes.
With only four groupings by age, interpretation of this sort in our
data must remain somewhat restrained, but finer resolution age
groupings could make this a valuable characteristic of our method.

5 CONCLUSIONS

Our wavelet based methodology for determining age-related
differential coexpression performs better than either a derivative
based method, or using the age groups independently. The wavelet
basis set also lends itself to ready interpretation in terms of both
evolutionary and physiological mechanisms of ageing and can be
seen as a natural generalization of two-category differential coex-
pression. The good performance across the multiple GO sets im-
plies that age related differential coexpression may be a common
process due to the degree to which ageing produces changes in
function and functional relationships. Because our wavelet-based
method for differential coexpression draws upon such a well estab-
lished signal processing tool for temporal data, it offers a well
characterized, efficient and convenient avenue for further study.
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