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ABSTRACT 
Motivation: Differential coexpression is a change in coexpression 
between genes that may reflect ‘rewiring’ of transcriptional networks. 
It has previously been hypothesized that such changes might be 
occurring over time in the lifespan of an organism (aging). While 
both differential expression and coexpression of genes have been 
previously studied in aging, differential coexpression has not. Gene-
ralizing differential coexpression analysis to many time points 
presents a methodological challenge. Here we introduce a method 
for analyzing changes in coexpression across ordered groups (e.g., 
over time) and test its usefulness. 
Results: Our method is based on the use of the wavelet transform 
to efficiently represent changes in coexpression at multiple time 
scales. We used published microarray studies categorized by age to 
test the methodology. We validated the methodology by testing our 
ability to reconstruct Gene Ontology (GO) categories using our 
measure of differential coexpression and compared this result to 
using coexpression alone. Our method allows significant improve-
ment in characterizing these groups of genes. In addition, we found 
that our method finds more significant changes in gene relationships 
compared to several other methods of expressing temporal relation-
ships between genes, such as coexpression over time. 
Supplementary data: http://www.chibi.ubc.ca/diffExAge 
Contact: paul@bioinformatics.ubc.ca 

1 INTRODUCTION  
Differential coexpression is defined as a change in the correlation 
relationships between genes. It is a natural extension of the concept 
of ‘guilt by association’, in which functional relationships between 
genes are thought to be reflected in coexpression relationships 
(Eisen et al,, 1998, Lee et al. 2004). Differential coexpression po-
sits that changes in coexpression can be biologically relevant, and 
occur with or without changes in gene expression levels (differen-
tial expression). We think of differential coexpression as potential-
ly revealing ‘rewiring’ of gene network, reflecting dynamic 
changes in the regulatory relationships between genes which can 
then be ‘read out’ at the level of transcription. Because of the po-
tential importance of network rewiring, differential coexpression 
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could be useful for uncovering molecular mechanisms of normal 
processes such as development and aging as well as disease 
processes. A schematic outlining the features of differential coex-
pression is provided in Figure 1. 

Differential coexpression has previously been studied primarily 
in the context of changes in coexpression between two groups 
(Watson, 2006, Choi et al., 2005, Kostka and Spang, 2004). How-
ever, no method to handle ordered groups, such as over age or 
time, has been proposed. 

The current study was motivated by our interest in studying 
human aging. For our purposes, we take ‘aging’ to include both 
developmental and normal senescent changes. In searching for 
biomarkers for ageing it has been usual to look for differential 
expression over time (Zahn et al., 2007, Lee et al., 1999). The 
equivalent task in differential coexpression analysis would com-
pare coexpression across time. Previous expression profiling stu-
dies have demonstrated that the expression patterns of age-
regulated genes are indicators for a functional measure of ageing in 
humans (Zahn et al., 2006, Rodwell et al., 2004). Because a large 
array of functional changes occur over age, age-related change 
may be a rich resource for differential coexpression – many linked 
changes in functional relationships or rewiring of transcriptional 
networks.  

The life-long and complex time course of aging means both 
that there are many potential natural divisions to group different 
ages together. One approach to analyzing changes would be to take 
a derivative of gene coexpression across time (over increasing age 
groups), thus providing the differential coexpression between each 
age group and the next. At the extreme one might consider com-
paring just two groups (e.g., ‘old’ and ‘young’). However, the 
derivative or two-group comparison will fail to detect gradual 
changes which can only be characterized over the long term. 
Another possible approach to characterize multiple time points 
would be to compare every age group to every other, but this is 
highly redundant and ignores the temporal relationship between 
data points.  

A good method for differential coexpression should have the fol-
lowing properties: 

(1) It would characterize the change in coexpression at each 
time. 
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2 METHODS 

2.1 Data grouping and normalization 
Human microarray studies from Gemma’s database were categorized by 
their subject’s ages into the four groups; “prenatal”, “child/young adult” (0-
18 years), “adult” (19-54), and “older adult” (55+).  Studies spanning more 
than one adult grouping were categorized by whether their ages ranged 
older or younger than adult.  Thus a study overlapping adult and older 
adult, for example, 50 to 100 years old, would be categorized within the 
“older adult” category and similarly a study consisting of 10-20 would be 
classified only as “child/young adult”.   In this way, trends away from the 
mean age are captured.  It is important to note that the studies used were 
not necessarily designed to study age effects, and include a variety of tis-
sues. The selection procedure yielded 8 to 13 studies for each age group 
and 37 in all, encompassing 2803 individual microarrays (13 to 404 arrays 
per study). Pearson correlations between pairs of genes were calculated for 
each study. For genes annotated by Gemma as having multiple probes in a 
given study, the correlations for the probes were averaged. Correlation 
values between pairs of genes for each study were converted to standard 
deviations from 0 in the correlation distribution as determined by the theo-
retical standard deviation from 0 of the Fisher transformation z = 0.5 log 
((1+r)/(1-r)) (Fisher, 1915), and averaged across common data groupings. 

To allow the investigation of differential expression over age, we com-
puted a relative rank-based measure of expression level for each gene. Each 
gene's expression level for each study was averaged across samples in each 
study, converted into a rank with the study, and then averaged within each 
age group.  

2.2 Wavelet transform 
For a time series, x(t), the continuous wavelet transform at scale a and time 
t, W(a, t) is given by:    

 
ܹሺܽ, ሻݐ ൌ ଵ

√௔
׬ כሻ݃ݑሺݔ ቀ௨ି௧௔ ቁ ݑ݀    (1) 

  

where g is the mother wavelet function and g* its complex conjugate, 
where g must satisfy certain constraints such as continuity, integrability, 
square integrability, and admissibility (wavelike). In our case, the wavelet 
is the step function, or Haar wavelet, g(x)=1 for 0>x>1/2, g(x)=-1 for 
1/2>x>1, and g(x)=0 otherwise. The discrete wavelet transform is then an 
implementation of the transform over discrete time points.  

Over our four age groups (prenatal, child/young adult, adult, older 
adult), the Haar basis consists of four values: 

 
• The averaged correlation between genes across all four time 

points: (1/2, 1/2, 1/2, 1/2) 
• The averaged correlation difference pre-adult and post-adult: 

(1/2, 1/2, -1/2, -1/2) 
• The averaged correlation difference prenatal to child/young 

adult: (1/sqrt(2), -1/sqrt(2), 0, 0) 
• The averaged correlation difference adult to older adult: (0, 0, 

1/sqrt(2),-1/sqrt(2)) 
 

The four wavelet differential coexpression values are the dot product 
of these vectors with the age grouped expression data. The wavelet lifting 
scheme was used to calculate the coefficients (Kaplan, 2002; Jense and 
Cour-Harbo, 2001). Note that the first wavelet coefficient represents the 
average coexpression across all ages. The remaining three coefficients 
represent differential coexpression and no aspect of coexpression (since the 
coefficients are orthogonal). Henceforth “differential coexpression coeffi-

cients” excludes the first coefficient. The variance of temporal coefficient 
values across the experiments used was calculated. 

We performed the Haar transform both on the averaged correlation be-
tween pairs of genes (as a time series across our age groups) as well as on 
the averaged ranks of individual genes. Differential expression may be a 
confound for differential coexpression so to ensure that the differential 
coexpression findings may not be explained by simpler underlying changes, 
genes exhibiting significant differential expression values at a given time 
and scale (top 5% rank change) were removed.  If a gene exhibited diffe-
rential expression for one coefficient, other values not exhibiting differen-
tial expression were retained.  Following this procedure, 927 genes were 
characterized as exhibiting differential expression for each coefficient and 
removed from analysis for differential coexpression. This allows our analy-
sis to focus on genes which are relatively stable in expression level, but 
which might exhibit changes in coexpression relationships with other 
genes. 

2.3 Validation 
All Gene Ontology (GO) groups of genes containing 25-30 members 

were chosen using the Gemma web services (see supplementary data). This 
size range was chosen for computational tractability of cross-validation, 
and to avoid using GO categories which overlap extensively. This generat-
ed 139 separate GO groups encompassing 2925 distinct genes out of a total 
10764 covered by the GO categories.  

We used these GO groups for validation of the differential coexpression 
results. By an analogy with the use of coexpression to predict gene func-
tion, we propose that each gene within a given GO set might have a charac-
teristic differential coexpression relationship with genes inside the set and a 
characteristic relationship with genes outside the set. For each gene inside 
the set, gene B, the respective distributions of differential coexpression 
coefficients can be calculated. An arbitrary gene, gene j, outside the set has 
differential coexpression values with gene B that may also be calculated. 
We may then ask if gene j's relationship with gene B resembles gene B's 
relationship with other genes inside the set or with genes outside the set. As 
a control, the same calculation was performed using the coefficient 
representing coexpression. 

A leave-one-out methodology was employed in the following fashion for 
genes A-Z: 

(1) The Gene A of genes A-Z was left out. 
(2) For the first differential coexpression coefficient, the distribution of 

differential coexpression coefficients between gene B and genes C-Z 
was calculated.  

(3) For each gene, gene j, not in the set B-Z, the first differential coex-
pression coefficient was calculated between gene B and gene j. 

(4) The distribution of first differential coexpression coefficients be-
tween gene B and all genes not in C-Z or j was constructed. 

(5) The odds ratio for the distributions in steps 3 and 4 was calculated 
for the value between gene B and gene j. 

(6) Steps 2-5 were repeated for genes C-Z and the geometric mean of the 
coefficients taken. 

(7) Steps 2-6 were repeated for each differential coexpression coefficient 
and the geometric mean was taken. 

(8) Steps 1-7 were repeated rotating through each gene in the set to gen-
erate receiver operator characteristic (ROC) curves. 

An additional basis set of differential coexpression coefficients was gen-
erated as a comparison to the wavelet transform. The first coefficient re-
mained the first value in time, while the remaining coefficients were calcu-
lated by taking a discrete derivative, or difference between successive pairs 
of values across time. This set will be referred to as the derivative set. 
Conceptually this overlaps with the time basis 1st coefficient and the wave-
let 3rd, and 4th coefficients, but lacks any scale variation, such as that found 
in the wavelet second coefficient. Significant coefficients (p<0.05) were 
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each age group independently (as attempted in the temporal basis) 
instead of as part of an ordered group would be most useful. 

A final possibility in lieu of the suggested bases would be to 
determine a good basis post hoc, as is effectively done in any di-
mension reduction. This presents a number of problems of its own. 
First, it will vary from dataset to dataset and introduce new norma-
lization difficulties. The variation from dataset to dataset would 
also reduce the general applicability of any results since any past 
findings would have to be reinterpreted in the context of whatever 
basis set is calculated for the new work. In addition, there would be 
no reason to see the new basis set as a form of differential coex-
pression precisely since it is unlikely that a single component 
would end up wholly representing coexpression (thereby removing 
it from the others, as was the case with the wavelet basis). More 
broadly, it is desirable that the method for producing the basis set 
be recursive in the sense that the addition of more age groupings 
should leave previous findings interpretable. Doubling the resolu-
tion (or duration) is naturally handled by the wavelet basis without 
altering the meaning of previous findings. This would not be so of 
a post hoc basis, which could change dramatically through the 
addition of new groupings, even for the same data. Finally, a prin-
cipled transformation of the data can be geared to offer value as an 
interpretive tool, as opposed to a purely methodological tool. 

4.2 Biological interpretation of the wavelet approach 
Our data covers a range of age categories including both de-

velopment and senescence. Two fundamental theories of senes-
cence are Williams (1957) theory of antagonistic pleiotropy and 
Medawar's (1946) theory of mutation accumulation. These theories 
present an interesting interpretation in the context of our differen-
tial coexpression coefficients. Antagonistic pleiotropy posits a 
long-scale connection between early states and late states, in which 
a characteristic useful in youth is negative later (e.g., Rodier et al., 
2007). A changing functional role over age in this way would be a 
good candidate to find differential coexpression, and, in particular, 
we would expect such differential coexpression to be present in the 
coefficient at the appropriate time-scale. That is, our second wave-
let coefficient (representing long term differential coexpression) 
may be thought of as mapping onto youthful tradeoff theories of 
ageing. Mutation accumulation, on the other hand, maps more 
readily onto our last wavelet coefficient, representing (relatively) 
short term and late stage changes in coexpression. The third wave-
let coefficient maps most readily onto developmental change, 
representing as it does, rapid and early changes in coexpression 
which we interpret at rapid and early changes in function for de-
velopment. More specific mechanistic interpretations of function 
and dysfunction over age also map more readily onto a wavelet 
basis than others because they typically involve both a factor in 
time and scale. As previously mentioned, Barker's theory of fetal 
programming implies suggests a long term effect between early 
states and late states. One well studied mechanism reviewed by 
Maric (2007) involves fetal programming for high blood pressure. 
Because the wavelet coefficients can capture both the scale and 
timing of this event, they might serve to elucidate the unknown 
genetic causes for the well characterized physiological changes. 
With only four groupings by age, interpretation of this sort in our 
data must remain somewhat restrained, but finer resolution age 
groupings could make this a valuable characteristic of our method. 

5 CONCLUSIONS 
Our wavelet based methodology for determining age-related 

differential coexpression performs better than either a derivative 
based method, or using the age groups independently. The wavelet 
basis set also lends itself to ready interpretation in terms of both 
evolutionary and physiological mechanisms of ageing and can be 
seen as a natural generalization of two-category differential coex-
pression. The good performance across the multiple GO sets im-
plies that age related differential coexpression may be a common 
process due to the degree to which ageing produces changes in 
function and functional relationships. Because our wavelet-based 
method for differential coexpression draws upon such a well estab-
lished signal processing tool for temporal data, it offers a well 
characterized, efficient and convenient avenue for further study. 
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