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ABSTRACT
Motivation: Gene Set Enrichment Analysis (GSEA) and its variations
aim to discover collections of genes that show moderate but
coordinated differences in expression. However, such techniques
may be ineffective if many individual genes in a phenotype-related
gene set have weak discriminative power. A potential solution is to
search for combinations of genes that are highly differentiating even
when individual genes are not. Although such techniques have been
developed, these approaches have not been used with GSEA to any
significant degree because of the large number of potential gene
combinations and the heterogeneity of measures that assess the
differentiation provided by gene groups of different sizes.
Results: To integrate the search for differentiating gene combinations
and GSEA, we propose a general framework with two key
components: (A) a procedure that reduces the number of scores to be
handled by GSEA to the number of genes by summarizing the scores
of the gene combinations involving a particular gene in a single score,
and (B) a procedure to integrate the heterogeneous scores from
combinations of different sizes and from different gene combination
measures by mapping the scores to p-values. Experiments on
four gene expression data sets demonstrate that the integration of
GSEA and gene combination search can enhance the power of
traditional GSEA by discovering gene sets that include genes with
weak individual differentiation but strong joint discriminative power.
Also, gene sets discovered by the integrative framework share several
common biological processes and improve the consistency of the
results among three lung cancer data sets.
Availability: Source code and datasets: http://vk.cs.umn.edu/ICG/.
Contact: gangfang@cs.umn.edu

1 Introduction
Microarray technology is an important tool to monitor gene-
expression in bio-medical studies [28]. A common experimental
design is to compare two sets of samples with different
phenotypes, e.g. diseased and normal tissue, with the goal of
discovering differentially expressed genes [17]. Statistical testing
procedures, such as such as the t-test and significance analysis of
microarrays [32], have been extensively studied and widely used.
Subsequently, multiple testing corrections are usually applied [11].
A comprehensive review of such approaches are presented in [27].

Differential expression analysis based on univariate statistical
tests has several well-known limitations. First, due to the low
sample size, high dimensionality and the noisy nature of microarray
data, individual genes may not meet the threshold for statistical
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significance after a correction for multiple hypotheses testing [29].
Second, the lists of differentially expressed genes discovered from
different studies on the same phenotype have little overlap [29].

These limitations motivated the creation of Gene Set Enrichment
Analysis GSEA [25, 29], which discovers collections of genes, for
example, known biological pathways [29], that show moderate but
coordinated differentiation. For example, Subramanian and Tamayo
et al. [29] report that the p53 hypoxial pathway contains many
genes that show moderate differentiation between two lung cancer
sample groups with different phenotypes. Although the genes in the
pathway are not individually significant after multiple hypothesis
correction [29], the pathway is. For those familiar with GSEA and
its output, Figure 1 shows the GSEA results for the p53 hypoxial
pathway. GSEA also has the advantages of better interpretability and
better consistency between the results obtained by different studies
on the same phenotype [29]. Ackermann and Strimmer presented a
comprehensive review of different GSEA variations in [1].

Unfortunately, GSEA and related techniques may be ineffective
if many individual genes in a phenotype-related gene set have weak
discriminative power. A potential solution to this problem is to
search for combinations of genes that are highly differentiating
even when individual genes are not. For this approach, the targets
are groups of genes that show much stronger discriminative power
when combined together [10]. For example, Figure 2(a) illustrates
one type of differentially expressed gene combination discovered in
[10]. The two genes have weak individual differentiation indicated
by the overlapping class symbols on both the two axes. In contrast,
these two genes are highly discriminative in a joint manner indicated
by the different correlation structure in the two-dimensional plot, i.e.
they are correlated along the blue and red dashed line respectively
in the triangle and circle class. Such a joint differentiation may
indicate that the interaction of the two genes is associated with the
phenotypes even though the two genes, individually, are not.

Figure 2(b) illustrates another type of phenotype-associated
gene combination discovered in [10], usually named differential
coexpression [19, 12], in which the correlation of the two genes
are high in one class but much lower in the other class. As discussed
in [10, 16], existing multivariate tests such as Hotelling’sT 2 [24],
Dempster’s T1 [9] are not suitable to detect such ‘complementary’
gene combinations because they only screen for differences in the
multivariate mean vectors, and thus will favor pairs that consist of
genes with strong marginal effects by themselves but not the genes
like the four in Fig. 2. For clarification, we use differential gene
combination search (denoted as DGCS) to refer to the multivariate
data analyses that are designed to detect the complementarity of
different genes, rather than those designed to model the correlation

c© Oxford University Press 2010. 1



Fang et al

Fig. 1. A gene set (p53 hypoxial pathway) with many moderate but
coordinated differential expression (towards the right tail of the ranked list).
Figure generated with GSEA software [29]

(a) M1 (b) M2

Fig. 2. Two highly differential gene-pairs with weak individual
discriminative power. Axes indicate the expression level of indicated
genes. Different color and shape of markers indicates the two
phenotypes. Figures modified from Dettling et al. [10]. This two
types of differential gene combinations are measured respectively
by two measuresM1 andM2 as described in section 2.

structure of different genes (such as Hotelling’sT 2 and Dempster’s
T1 test). A variety of other DGCS measures for complementary
gene combination search are proposed for gene pairs [21, 20] in
addition to the two illustrated in figure 2. Several measures are
designed for higher-order gene combination beyond pairs [12, 35].
These approaches can provide biological insights beyond univariate
gene analysis as shown in [10, 12, 35].

The limitations of GSEA and the capabilities of DGCS motivate
a GSEA approach using gene combinations in which the score of a
gene set is based on both the scores of individual genes in the set
and the scores from the gene combinations in which these genes
participate. Unfortunately, gene combination techniques have not
been used with the GSEA approach in any significant way because
of two key challenges.

• Finding a technique to reduce the vast number of
gene combinations. There are exponentially more gene
combinations than individual genes, i.e. in addition to the
N univariate genes, there areN2 gene-pairs,N3 gene-
triplets, etc. Many variations of GSEA are based on a ranked
list of the N individual genes as illustrated in Figure 1.

Including combinations in the ranked list might work for size-
2 combinations [7, 36], but would not be feasible for handling
gene combinations of larger sizes. Furthermore, this explosion
in the number of gene combinations negatively impacts false
discovery rates. Thus, by adding so many gene combinations,
we run the risk that neither groups of genes nor individual
genes will show statistically significant differentiation.

• Combining results from the heterogeneous measures used
to score different size gene combinations.Furthermore,
because a gene can be associated with the phenotype either
as an univariate variable or together with other genes as a
combination, the importance of a gene set should be based
on both the univariate gene scores and the gene combination
based scores of its set members. However, different measures
have a different nature, scale and significance, and thus are
not directly comparable (to be detailed in section 3.2). Indeed,
differences exist even between gene combinations of the same
measure but of different sizes. Therefore, the challenge lies
in how to design a framework to combine different measures
(a univariate measure1 plus one or more DGCS measures)
together within the GSEA framework.

To the best of our knowledge, no existing work has sufficiently
addressed these two challenges, although recent work presented in
[7, 36] have made initial efforts at adding GSEA capabilities to gene
combination search. More specifically, two approaches are proposed
in [7, 36] to help the study of a specific type of size-2 differential
combinations as illustrated in 2(b). The experiments in these two
studies provide some evidence about the benefits of the integration.
However, a more general framework is needed that can also handle
other types of size-2 differential combinations as illustrated in figure
2(a), higher order differential combinations (e.g. SDC[12] and the
n-statistic [35]), and multiple types of differential combinations.

Contributions: In this paper, we propose a general framework to
address the above challenges for the effective integration of DGCS
and GSEA. Specific contributions are as follows:

1. A gene-combination-to-gene score summarization procedure
(procedure A) that is designed to handle the exponentially
increasing number of gene combinations.First, for a given
gene combination measure and a certaink, the score of a size-k
combination is partitioned intok equal parts which are assigned
to each of thek genes in the combination. Because each gene
can participate in up to

(

N−1
k−1

)

size-k combinations, each gene
will be assigned with a score from each of these combinations.
Secondly, an aggregation statistic, e.g., maximum absolute
value is used to summarize the different scores for a gene. With
such a procedure, scores for all the size-k gene combinations
are summarized toN scores forN genes. This procedure can
effectively retain theO(N) length of the ranked list while
handling gene combinations of size-k (k ≥ 2).

2. A score-to-pvalue transformation and summarization
procedure (procedure B) that is designed to integrate
the scores contributed (in procedureA) from different

1 Ackermann and Strimmer [1] suggest that different univariate statistics
have similar effect in GSEA and thus, we consider only one univariate
statistic rather than multiple of them.
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gene combination measures and from gene combinations
of different sizes. The transformation is based on p-values
obtained from scores derived from phenotype permutations.
Such a transformation enables the comparison of scores from
different measures (either univariate or gene combination
measures) and scores from the gene combinations of different
sizes. Subsequently, among all the p-values of a gene, the best
is used as an integrated score of statistical significance.

3. Integration of the above two procedures with GSEAMore
specifically, after proceduresA andB, each gene has a single
integrated score. Unlike traditional univariate scores, these
N integrated scores are based on both the univariate statistic
and the gene combination measures. For the type of GSEA
variations that depend on phenotype permutation test,P + 1
lists of N integrative scores are computed, one for the real
class labels and the other for theP permutations. For the type
of GSEA variations that are based on gene-set permutation
test, only the list of integrated scores for the real class labels
are needed. An independent Matlab implementation of the
proposed framework is available for download, which allows
most existing GSEA frameworks [1] to directly utilize the
proposed framework to handle gene combinations with almost-
zero modification.

4. Experimental results that illustrate the effectiveness of the
proposed framework. We integrated three gene combination
measures and the GSEA approach presented in [29] and
produced experimental results from four gene expression
datasets. These results demonstrate that the integrative
framework can discover gene sets that would have been missed
without the consideration of gene combinations. This includes
statistically significant gene sets with moderate differential
gene combinations whose individual genes have very weak
discriminative power. Thus, a gene combination assisted
GSEA approach can improve traditional GSEA approaches
by discovering additional disease-associated gene sets. Indeed,
the integrative approach also improve traditional DGCS since
most gene combinations are not statistically significant by
themselves. Furthermore, we also show that the biologically
relevant gene sets discovered by the integrative framework
share several common biological processes and improve the
consistency of the results among the three lung cancer data sets.

Overview: The rest of the paper is organized as follow. In
section 2, we describe three gene combination measures used in
the following discussion and experiments. In Section 3, we present
the technical details of the two procedures of the general integrative
framework. Experimental design and results are presented in
Section 4, followed by conclusions and discussions in Section 5.

2 Differential Gene Combination Measures

In this section, we describe three DGCS measures for use in the
following discussion and experiments. LetA =

{

a1, a2, . . . , a|A|

}

andB =
{

b1, b2, . . . , b|B|

}

be two phenotypic classes of samples
of size |A| and |B| respectively. For each sample inA andB, we
have the expression value ofN genesG = {G1, G2, . . . , GN}.
First, we have the following two measures (denoted asM1 andM2)
defined for a pair of genes as presented in [10]:

M1(Gi, Gj) = corrA(Gi, Gj)+corrB(Gi, Gj)−corrA∪B(Gi, Gj) (1)

M2(Gi, Gj) = corrA(Gi, Gj) − corrB(Gi, Gj) (2)

whereGi andGj are two genes, andcorrD(Gi, Gj) represents
the correlation ofGi andGj over the samples in setD. As discussed
in [10], M1 andM2 can detect the joint differential expression of
two genes as illustrated in Figure 2(a) and Figure 2(b) respectively.
M1 andM2 are used as two representative measures for gene pairs.
Other options for gene combination measures for gene pairs have
been investigated in [20, 21].

We use the subspace differential coexpression measure (denoted
asM3) proposed in [12] as the representative for measures for size-k

gene combinations, wherek can be any integer (k ≥ 2).

M3(α) = RA(α) − RB(α) (3)

whereα is a set of genes such thatα ⊆ G and|α| = k. RA(α)
andRB(α) respectively represent the fraction of samples inA and
B over which the genes inα are coexpressed.M3 is a generalization
of M2 for detecting the differential coexpression ofk genes (k ≥ 2),
i.e. thek genes are highly coexpressed over many samples in one
class but over far fewer samples in the other. Other options for size-k
combinations include then-statistic[35], SupMaxPair[13], etc.

Signal-to-noise ratio (denoted asM0) is used as the representative
of traditional univariate statistics as in [29, 25].

M0(Gi) =
µA(Gi) − µB(Gi)

σA(Gi) + σB(Gi)
(4)

whereµA(Gi) andµB(Gi) are the mean expression ofGi in
classA and B respectively, andσA(Gi) and σB(Gi) are the
standard deviation of the expression ofGi in class A and B

respectively. Many other univariate statistics can be found in [1].
In this paper, these four measures are used as representatives

of each category for the illustration of the proposed integrative
framework. However, the framework is general enough to handle
other measures from each of these categories.

3 METHODS
In Section 1, we motivated the integration of DGCS with GSEA, discussed
two challenges associated with this integration, and briefly described two
main procedures in the proposed framework. In this section, wepresent the
technical details of the two procedures and their integration with GSEA.

3.1 ProcedureA: combination-to-gene score reduction
There are two steps in procedureA. In step(1), for each DGCS measure
and each size-k gene combination, its score is divided intok equal parts
and assigned to each of thek genes in the combination. In step(2), the
scores assigned to a gene from all the size-k combinations in which the gene
participates are summarized into a single score by an aggregation functions
such asmax. Note that, for most univariate statistic and DGCS measures
which can be either positive or negative (e.g. the four measures described in
section 2), the maximum is taken over the absolute values of thescores, and
the sign of the score with the highest absolute value is recorded for later use.
Other simple statistics such as mean or median, or sophisticated ones such
as weighted summation [34] can also be used. Since the focus of this paper
is the overall integrative framework, we usemax for simplicity.

We provide a conceptual example of procedureA for a geneG1 with a
certain DGCS measureM1. This example considers gene combinations up
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to size4 for illustration purpose. The gene is associated with scores assigned
from gene combinations of size 2, 3 and 4 (denoted asC2, C3 andC4

respectively) in whichG1 participates. In step(2), the scores fromC2, C3

andC4 are summarized by three maximum values, respectively.
ProcedureA serves as a general approach to summarize the

(

N
k

)

scores
of all the size-k combinations intoN scores for theN genes. If we want to
integrate GSEA with one DGCS measure and a specific size-k, procedure
A by itself can enable most existing variations of GSEA to search, with
almost-zero modification, for statistically significant genesets with moderate
but coordinated gene combinations of size-k. Such a GSEA approach can
collectively consider the gene combinations affiliated witha gene set, and
may provide better statistical power and better interpretability for DGCS, as
will be shown in the experiments.

3.2 ProcedureB: Score-to-pvalue conversion and
summarization

The hypothesis tested when one DGCS measure, sayMx, is integrated with
GSEA (by procedureA) is that, whether a gene set includes significantly
many genes with highly positive (or highly negative) combination-based
scores measured byMx. An extended hypothesis can be whether a gene set
includes significantly many genes with highly positive (or highly negative)
scores, either univariate or combination-based scores measured by different
DGCS measures. The biological motivation of this extended hypothesis is
that, a gene can be associated with the phenotype either as anunivariate
variable or together with other genes as a combination. To test this extended
hypothesis, we design a second procedure (B) that can integrate the scores
of a gene from different measures.

Before describing the steps in this procedure. We first discuss in detail
the challenges of integrating heterogeneous scores from different DGCS
measures and combinations of different sizes.

1. The different nature of different measures: Different measures are
designed to capture different aspects of the discriminativepower of
a gene or a gene combination between the two phenotypic classes.
Signal-to-noise ratio (M0), a univariate gene-level statistic, measures
the difference between the means of the expression of a gene inthe two
classes. In contrast,M2, a differential coexpression measure for a pair
of genes describes the difference of the correlations of a gene-pair in
the two classes. Thus, for a gene, the score of itself measuredby M0

and the score assigned and summarized from the
(

N−1
1

)

size-2 gene
combinations measured byM2 are not directly comparable. Similarly,
the scores of different DGCS measures can also have a different nature,
e.g.M1 andM2 as illustrated in figure 2.

2. The different scales of different measures: Different measures also
have different ranges of values. For example, the range ofM0, M1,
M2, andM3 are[−∞,∞], [−3, 3], [−2, 2] and[−1, 1] respectively.
Thus, they are not directly comparable.

3. Differences in significance between different measures: Even after
we normalize the scores of different measures to a single range,
say [−1, 1], they are still not comparable because the scores of
different measures have different statistical significance. For example, a
normalizedM0 score of0.8 may be less significant than a normalized
M1 score of 0.5, if there are many genes with normalizedM0 score
greater than0.8 in the permutation test [29], but very few genes with
normalizedM1 score greater than0.5 in the permutation test. Note
that, such differences in statistical significance also exists between gene
combinations of different sizes, even for the same measure. Take the
subspace differential coexpression measureM3 as an example. A score
of 0.5 for a size-2 combination may not be as significant as a score of
0.5 for a size-3 combination as discussed in [12].

To handle the above heterogeneity, we propose a score-to-pvalue
transformation and summarization procedure that can enable the comparison

Fig. 3. Illustration of step1 in procedureB (score-to-pvalue transformation)
for geneGi and measureM2.

and integration of the scores of different measures and combinations of
different sizes. There are three major steps in procedureB.

3.2.1 Step 1: Score-to-pvalue transformation Consider a concrete
example. For a geneGi and a measureM2, procedureA computes a
single summarized score. In this step, the original phenotypeclass labels are
permutated say1000 times, and for each permutation, the same procedureA

is applied, and a corresponding score forGi andM2 is computed. We denote
the score ofGi andM2 summarized with the original label asSi,2,0, where
i is the gene index, and2 indicates the measure and0 means it is the score
based on the original label. Similarly, we denote the scores computed in each
of the permutation asSi,2,j , where1 ≤ j ≤ 1000.

These1001 scores are organized in the table on the left in figure 3.
The1000 scores computed in the1000 permutations can be considered as
the null-distribution for geneGi and measureM2, and a p-value can be
estimated forSi,2,0. Specifically, ifSi,2,0 is positive, the p-value is the
ratio of the number of scores that are greater or equal toSi,2,0 and the
number of scores that are positive. Similarly ifSi,2,0 is negative, the p-
value is computed as the ratio of the number of scores which are less or
equal toSi,2,0 and the number of scores which are negative.2 Note that,
such a score-to-pvalue transformation is done for bothSi,2,0 and each
of Si,2,j (1 ≤ j ≤ 1000), if the GSEA approach to be integrated is
based on phenotype permutation test [31]. Otherwise, onlySi,2,0 needs
to be transformed to p-value and will be used by the GSEA approaches
that are based on gene-set permutation [31]. In this paper, weillustrate the
proposed framework using the GSEA approach presented by Subramanian
and Tamayo et al. [29] which is based on phenotype permutation test.

Essentially, step1 transforms the heterogeneous scores of a gene
measured by different measures into their corresponding significance values,
which are comparable to each other although their original values are not.

3.2.2 Step 2: P-value Summarization Suppose that there areQ
different measures to be integrated, one of which is a univariate statistic, and
the others are different DGCS measures for which we consider combinations
of sizes up toK. After step1, each gene has a p-value for the univariate
measure and up toK p-values for each size of gene combination for each
measure. In step2, the best3 p-value associated with a gene is selected as the
integrated significance.

2 Treating positive and negative scores separately follows the practice of
GSEA [31]
3 ”Best” means it is the lowest raw p-value or the highest−log10
transformed p-value
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Essentially, procedureB integrates the scores of different DGCS
measures for a gene and the univariate statistic of the gene into a single
p-value. Such a statistical significance-based integration of heterogeneous
scores enables the comparison and thus the ranking of all theN genes.
However, this ranked list does not maintain the original directionality of the
integrated scores of each gene. In particular, most univariate statistics and
DGCS measures (e.g. all the four measures described in section2) can be
either positive or negative. Such directionality information is lost in step1
and2 because the p-value is non-negative. Next, we describe a third step to
maintain the directionality in the integration.

3.2.3 Step 3: Maintaining directionality associated with the
integrated p-values In the simple case, the measures to be integrated
capture the same type of differentiation between the two phenotype classes,
e.g.M2 andM3. Suppose there are two genesGi andGj , whose integrated
p-values are transformed respectively from two scores measured by M2

andM3 in step2. The signs of these two scores are comparable to each
other, because bothM2 andM3 capture the change of coexpression of a
combination of genes. Thus, we simply use the signs of these twoscores as
the signs associated with the integrated p-values ofGi andGj . Similarly,
we associate a sign to all theN integrated p-values. And theseN p-
values with associated signs can be used to rank theN genes based on
their significance as well as their direction of differentiation, i.e. p-values
associated with positive signs are ranked with descending significance,
and afterwards, p-values associated with negative signs are ranked with
increasing significance.

In the other case, if the measures to be integrated capture different types
of differentiation between the two phenotype classes, the directionality can
not be fully maintained. For example, suppose there are two genes Gi

andGj , whose integrated p-values are transformed respectively from two
scores measured byM0 andM2 in step2. The signs of these two scores
are not comparable, becauseM0 captures the change of mean expression,
andM2 captures the change of coexpression of a combination of genes.
Specifically, up-regulation ofGi can be associated with either high or low
coexpression of another gene-combination in whichGj participates. Thus,
it is not reasonable to follow the same strategy to associate signs to theN
integrated p-values. If we know the correspondence of the signs of different
genes in advance, e.g. the up-regulation ofG1 is associated with the low
coexpression ofG2 andG3, then the signs can be maintained. However,
because it is not realistic to assume such prior knowledge, wepropose the
following heuristic approach which has proved a workable solution for our
initial experiments. Specifically, since the focus of stepB is to integrate
different DGCS measures in addition to the univariate statistic M0, we
consideredM0 as the base measure. For the integrated p-values that are
transformed from scores measured byM0 in step2 (say there arew of them),
we use the signs of thesew M0 scores for thew integrated p-values. For the
signs of the otherN −w genes, we assign positive signs to all of them once
and negative signs to all of them a second time. Correspondingly, we have
two ranked lists similar to the simple case described above.

Note that, if the directionality of differential measures can be preserved,
the power of this approach will be enhanced. To deal with the situation where
signs are not comparable, other approaches will be explored.

3.3 Integration with GSEA
From the above description of procedureA andB, we know that, if only
one DGCS measure is used in the GSEA framework, only procedureA is
needed. If one or multiple DGCS measures are integrated together with the
univariate statisticM0 in the GSEA framework, procedureB is needed in
addition. In the first case, the integrative framework outputs a ranked list
of N scores with associated signs for the original class label, and 1000
lists corresponding to the1000 permutation tests. In the second case, we
have two sets of1001 lists respectively for the two rounds of maintaining
directionality in step3 in procedureB.

In either case, the1001 ranked lists along with the appropriate parameter
settings and specification of gene sets can be used to run GSEA. The

only modification to GSEA is the elimination of the initial GSEAstep
to generate the scores, simulated and actual, that measure thelevel of
differentiation between genes across different phenotypes. The proposed
integrative framework is implemented as a Matlab function (available at
http://vk.cs.umn.edu/ICG/), independently from the GSEA framework to be
integrated in this paper [29]. As summarized by Ackermann and Strimmer
[1], hundreds of variations of GSEA are being used by different research
groups. This independently implemented integrative framework can be
easily applied to other variations of GSEA.

Because of space limitations, readers interested in the details of the
proposed approach are referred to the technical report [14].

4 Results
In this section, we present the experimental design and results
for the evaluation of the proposed integrative framework. We first
provide a brief description of the data sets and parameters used in
the experiments. Second, we describe and discuss the comparative
experiments to study whether the integration of DGCS and GSEA
(denoted as DGCS⊕GSEA) improves both DGCS and GSEA. The
two major evaluation criteria are the statistical power to discover
(additional) significant results, and the consistency of the results
across different datasets for the study of the same phenotype classes.

4.1 Data sets

The four datasets used in the experiments are described as follows:

1. Three lung cancer datasets respectively denoted as Boston [4],
Michigan [3] and Standford [15]: all the three data sets consist
of gene-expression profiles in tumor samples from respectively
62, 86 and 24 patients with lung adenocarcinomas and provide
clinical outcomes (classified as ”good” or ”poor” outcome).
The two phenotypic classes in these three datasets are denoted
asA andD as in [29].

2. A data set from the NCI-60 collection of cancer cell lines for
the study of p53 status [26] (denoted asP53 data set): the
mutational status of the p53 gene has been reported for 50 of
the NCI-60 cell lines, with 17 being classified as normal and 33
as carrying mutations in the gene. The two phenotypic classes
in this dataset are denoted asMUT andWT as in [29].

All four datasets were downloaded from the GSEA website4[29],
and were already preprocessed as described in the supplementary
file of [29]. For all four data sets, we use the gene sets fromC2 in
MSigDB4 as in [29], as well as the same parameters.

4.2 Differential gene-combination measures

We consider one univariate statistic (M0), and three gene-
combination measures (M1, M2 and M3) in our experiments.
These four measures are described in section 2.M1 andM2 are
defined only for size-2 combinations. ForM3, we considered gene-
combinations of size-2 and size-3 for the illustration of concept.

4.3 Q1: Does GSEA-assisted DGCS improve traditional
DGCS?

In this section, we study whether the question (Q1) of whether
integration of DGCS and GSEA can improve traditional DGCS.
For this comparison, we consider the integration of DGCS and
GSEA as a GSEA-assisted DGCS approach. We first apply

4 http://www.broadinstitute.org/gsea/
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Table 1. Number of gene combinationswith
FDR less than0.25 discovered from the four
data sets by each combination measure

Boston Michigan Stanford P53

M1 0 2 0 0
M2 645 1 2 1
M3 10 1 0 0

Table 2. Number of gene setswith FDR less than0.25
discovered from the four datasets by integrating GSEA
with each of the three combination measures. One or
multiple biological process(es) are indicated as superscript,
from which we can observe the consistency across three
lung cancer data sets.A: apoptosis related pathways;H:
responses to hypoxia;S: sppaPathway; I: insulin-signaling
sets; X: oxidative-phosphorylation related sets;P : p53-
related sets. The names of the discovered gene sets and their
FDRs are available in the technical report[14].

Boston Michigan Stanford P53

M1⊕GSEA 4(A) 1(A) 4(A) 13(PX)

M2⊕GSEA 1(H) 7(HS) 4(HS) 0
M3⊕GSEA 0 1(I) 3(X) 2(P )

the traditional DGCS approaches on the four datasets to find
statistically significant gene-combinations. We denote the three
DGCS approaches respectively with the names of the three
measures, i.e.M1, M2 andM3. Second, we apply the integrative
framework, in which GSEA is integrated respectively with the
three DGCS measures, to find statistically significant gene sets
with moderate but coordinated differential gene-combinations. We
denote the three instances of the integrative approach respectively
asM1⊕GSEA,M2⊕GSEA andM3⊕GSEA. Then, we compare
the results ofM1, M2 and M3, respectively with the results of
M1⊕GSEA,M2⊕GSEA andM3⊕GSEA.

Table 4.3 lists the number of statistically significant gene
combinations discovered respectively by the three measures on each
of the four datasets, with an FDR threshold of0.25. Table 4.3
lists the number of statistically significant gene sets discovered by
integrating GSEA respectively with the three DGCS measures on
each of the four datasets, also with the same FDR threshold of0.25.
Three major observations can be made by comparing the two tables:

4.3.1 GSEA-assisted DGCS has better statistical power than
traditional DGCS Table 4.3 shows that, in most cases, traditional
DGCS discovers very few (less than 3) statistically significant
gene combinations (althoughM2 andM3 have645 and10 gene-
combinations on the Boston data set, none of them have FDR
lower than0.10). In contrast, table 4.3 shows that the integration
of GSEA with the three combination measures discover multiple
significant gene sets in most of the cases. This difference implies
that the discovered statistically significant gene sets include many

moderate but coordinated differential gene combinations, even
though the combinations are not significant by themselves as shown
in table 4.3. This comparison demonstrates that traditional DGCS,
similar to univariate gene analysis, has limited statistical power, and
DGCS⊕GSEA can increase that power.

4.3.2 GSEA-assisted DGCS has better result consistency
than traditional DGCS We further compare DGCS and
DGCS⊕GSEA by studying the consistency of their results on the
first three data sets that are all from lung cancer studies, as done in
[29]. For DGCS,M1 discovered2 genes on Michigan but nothing
from Boston and Stanford;M2 discovered645 combinations on
Boston but only 1 and 2 from Michigan and Stanford, respectively,
and there are no common ones between the 645, 1, and 2 gene
combinations;M3 discovered10 genes on Boston but only1
gene on Michigan and nothing from Stanford, and the 10 and 1
combinations do not overlap. The inconsistent results make the
follow-up biological interpretation very difficult.

In contrast, when the three DGCS measures are integrated
with GSEA, several consistent themes can be observed: (i)
Apoptosis related pathways (marked byA in table 4.3):M1⊕GSEA
discovered four gene sets on Boston, three of which are known
to be closely related to cancer and specifically to apoptosis, i.e.
nfkbpathway, ST-Gaq-Pathwayand TNF-Pathway. This apoptosis
theme is shared by the gene sets discovered byM1-GSEA from
Michigan and Stanford, i.e.Monocyte-AD-Pathway, hivnefPathway,
deathPathway and caspasePathway. These apoptosis related
pathways are enriched with the lung cancer samples with good
outcome, which makes sense biologically and also corresponds
to the proliferation theme supported by the gene sets enriched
with the samples with poor outcome as reported in [29]. Several
other examples of the result consistency, as indicated by other
superscripts in Table 4.3, are in the technical report. This
comparison demonstrates that traditional DGCS, like univariate
gene analysis, has poor result consistency across the three lung
cancer data sets, and DGCS⊕GSEA can improve its consistency
by integrating DGCS measures with GSEA.

4.3.3 GSEA-assisted DGCS with different DGCS measures
complement each other The number of significant gene sets
discovered by the three versions of GSEA varies, i.e.M1⊕GSEA
andM2⊕GSEA discovered a bit larger number of significant gene
sets thanM3⊕GSEA. However,M3⊕GSEA still discovered several
gene sets that are not discovered byM1⊕GSEA orM2⊕GSEA,
e.g. one gene set from the Michigan data set and three from the
Stanford data set. This indicates thatM1⊕GSEA, M2⊕GSEA
and M3⊕GSEA have complementary perspectives, i.e. different
combination measures capture different aspects of the difference
between the phenotype classes (recall the two types of combinations
in Figure 2). This also demonstrates the proposed framework is
general enough to integrate any type of DGCS with GSEA.

4.4 Q2: Does DGCS-assisted GSEA improve GSEA?

In this Section, we want to answer the question (Q2) of whether
the integration of DGCS and GSEA can improve traditional GSEA.
For this comparison, we consider the integration of DGCS and
GSEA as a DGCS-assisted GSEA approach. We design three sets
of comparisons. Firstly, we compare the traditional univariate-
statistic based GSEA (denoted asM0⊕GSEA) with the integrative
framework where one gene-combinations measure is used instead
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of M0. Specifically, we compare the gene sets discovered
by M0⊕GSEA with the gene sets discovered byM1⊕GSEA,
M2⊕GSEA andM3⊕GSEA. Then, we compareM0⊕GSEA with
the integrative framework where one gene-combinations measure
is used in addition toM0, i.e. M01⊕GSEA, M02⊕GSEA and
M03⊕GSEA. Furthermore, we also study the integration of multiple
gene-combinations measure in addition toM0, e.g.M0123⊕GSEA.

Figure 4 displays the statistically significant gene sets discovered
with different (combinations of) measures respectively from
the four datasets. An FDR threshold of0.25 is used as
in [29] for comparison purpose. The results presented in
[29] are exactly reproduced, i.e. the gene sets listed in the
rows corresponding toM0⊕GSEA. In each of these four
figures, we consider the traditional univariate-statistic based
GSEA (M0⊕GSEA) as the baseline, and compare it with the
rows corresponding toM1⊕GSEA, M2⊕GSEA, M3⊕GSEA,
M01⊕GSEA, M02⊕GSEA, M03⊕GSEA andM0,1,2,3⊕GSEA.
From these comparisons, the following observations can be made.

4.4.1 DGCS-assisted GSEA discovers additional significant
gene sets First, we compare the rows corresponding to
M1⊕GSEA,M2⊕GSEA,M3⊕GSEA with the rows corresponding
to M0⊕GSEA. We bolded the additional gene sets that are only
discovered byM1⊕GSEA,M2⊕GSEA,M3⊕GSEA. For example,
with M0⊕GSEA, no statistically significant gene sets have been
enriched with class A in the Boston data set. In contrast,M1⊕GSEA
discovered4 gene sets, three out of which (discussed inQ1) are
related to apoptosis which is consistent with the results on Michigan
and Stanford. On the Michigan dataset,M2⊕GSEA discovered
a gene setbeta-Alanine-metabolismthat is not discovered by
M0⊕GSEA. This gene set is related to the responses of hypoxia,
which is consistent with the results on Boston and Stanford. It is
worth noting that, although most studies did not report statistically
significant gene sets on the Stanford dataset due to the very small
sample size,M1⊕GSEA, M2⊕GSEA, M3⊕GSEA respectively
discovered 4, 4 and 3 significant gene sets. These additional
gene sets were discovered because the three DGCS measures
capture different types of the differentiation between the two
phenotype classes, compared to the traditional univariate differential
expression-based GSEA.

Second, we compare the rows corresponding toM01⊕GSEA,
M02⊕GSEA, M03⊕GSEA with the rows corresponding to
M0⊕GSEA. We bolded the additional gene sets that are only
discovered by the integrative approach. For example, on the Boston
data set,M0 based GSEA discovered 8 gene sets. In addition,
M01⊕GSEA discovered theproteasomePathwaygene set, and
M02⊕GSEA discovered thep53-signalinggene set. Both ubiquitin-
proteasome pathway and p53-signaling pathway are well-known
cancer-related pathways that are also specifically related to lung
cancer [22, 6]. (Additional examples are in the technical report.)
The gene sets that are discovered by DGCS-assisted GSEA but not
byM0-GSEA illustrate the benefits of using DGCS to assist GSEA.

Next, we also observed that integrating multiple DGCS
measures can further discover statistically significant gene sets.
For illustration purpose, we compare the rows corresponding
to M01⊕GSEA, M02⊕GSEA, M03⊕GSEA with the rows
corresponding toM0123⊕GSEA. M0123⊕GSEA discovers the
g2Pathwaygene set and thegsk3Pathwaygene set, respectively
from the Boston and the Michigan dataset. Neither of these

two pathways are discovered byM0⊕GSEA, M01⊕GSEA,
M02⊕GSEA andM03⊕GSEA. The curated gene setg2Pathway
contains the genes related to the G2/M transition, which is shown
to be regulated by p53 [30], a well-known cancer-related gene. The
curated gene setgsk3Pathwayis the signaling pathway of GSK-
3-β, which has been shown to be related to different types of
cancer[5, 23]. These two cancer-related pathways are discoveredby
M0123⊕GSEA but not byM0⊕GSEA,M01⊕GSEA,M02⊕GSEA
andM03⊕GSEA. This indicates that different members of these
two pathways are differential between the two phenotype groups in
different manners, i.e. the differentiation of some genes is captured
by M0, some byM1, some byM2 and some byM3. These two
pathways can be discovered to be statistically significant only when
these measures are used together in the integrative framework. This
demonstrates the benefits of the proposed framework for integrating
multiple DGCS measures with a univariate measure.

It is worth noting that, the gene sets discovered by the integrative
framework with multiple measures are not necessarily a superset
of those discovered by integrating each individual measure with
GSEA since, when different DGCS measures are integrated
with GSEA, the null-hypotheses tested in the GSEA framework
are correspondingly different. The highlight of the integrative
framework is that, additional gene sets can be discovered when
different DGCS measures are used to assist the traditional univariate
statistic-based GSEA. In practice, these different versions of GSEA
should be used collectively.

4.4.2 DGCS-assisted GSEA discovers gene sets with lower
FDRs :

Even when a gene set is discovered both before and after a
DGCS measure is integrated into the framework, we can observe
several interesting cases where the FDR of a gene set becomes much
lower after the integration. We bolded the FDRs that significantly
decreased when they are discovered by the integrative approach.
For example,M0123⊕-GSEA, in whichM0, M1, M2 andM3 are
integrated together, discoversp53hypoxialPathwaywith an much
lower FDR of 0.00095, two-order lower thanM0-GSEA. This
example indicates that several members ofp53hypoxialPathway
have weak individual differentiation measured byM0, but have
more significant differentiation when they are measured byM3.
This and other similar examples demonstrates the benefits of the
proposed framework for integrating multiple DGCS measures.

4.4.3 DGCS-assisted GSEA further improve the consistency
across the three lung cancer data setsAs presented in [29],
M0⊕GSEA discovered8 and 11 gene sets respectively from the
Boston and Michigan data sets, and 5 of the 8 in Boston and 6 of the
11 in Michigan are common. The three unmatched gene sets that
are discovered in Boston but not in Michigan areGLUT-DOWN,
LEU-DOWNandCellCycleCheckpoint. Interestingly, the latter two
are discovered from both the Boston and the Michigan data sets
by M01⊕GSEA5. Such observations suggest that DGCS-assisted
GSEA also provides new insights to the consistency between
different data sets.

4.4.4 Additional issues of multiple hypothesis testing Because
different combinations of measures are used in the integrative
framework, additional issues of multiple hypothesis testing arise,

5 The CellCyclePathwaydiscovered on Michigan and thecell-cycle-
checkpointdiscovered on Boston are both cell-cycle related gene sets
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Fig. 4. Common captions for the four tables: Statistically significant gene sets discovered by different (combinations of) measures from each of the four
data sets. The first row of each table shows the name of the data set, and the second row indicates the two phenotype classes inthe data set that a gene set
can be enriched with. The first column indicates the measures used in the integrative framework. For each data set and each (combination of) measure(s),
we list the names of the statistically significant gene sets and the corresponding FDRs for both the classes. The traditional univariate-statistic based GSEA
(M0⊕GSEA) is considered as the baseline. For the other rows, we only list a gene set if it is only discovered by the integrative approach (with bolded name),
or it has a non-trivially decreased FDR when it is discoveredby the integrative approach (with bolded FDR).

even though multiple hypothesis testing has been addressed for
each measure via the phenotype permutation test procedure in the
GSEA framework proposed in [29]. To investigate this, we designed
experiments with 4 of the15(= 24−1) possibilities of integrations,
i.e. M01⊕GSEA,M02⊕GSEA,M03⊕GSEA andM0123⊕GSEA.
Even using a collective (meta-level) multiple hypothesis correction,
many discovered gene sets would still be significant. For examples,

M0123⊕GSEA discoversp53hypoxialPathwayfrom the Boston
data set with a low FDR of0.00095, andM0123⊕GSEA discovers
deathPathwayfrom the Michigan data set with a lower FDR of
0.00197. We also did additional permutation tests, in which we
generate random gene sets with the same sizes as the sets in
MSigDB C2, and do the same set of experiments as shown in
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Figure 4. The FDR values of the random gene sets computed in the
integrative framework are mostly insignificant (higher than0.25).

5 Discussion
In this paper we motivated the integration of differential gene-
combination search and gene set enrichment analysis for bi-
directional benefits on both them. We proposed a general integrative
framework that can handle gene-combinations of different sizes
(k ≥ 2) and different gene-combination measures in addition to
an univariate statistic used in traditional GSEA. The experimental
results demonstrated that, on one hand, GSEA-assisted DGCS
has better statistical power and result consistency than traditional
DGCS. On the other hand, DGCS-assisted GSEA can discover
additional statistically significant gene sets that are ignored by
traditional GSEA and further improve the result consistency of the
traditional GSEA.

The proposed framework can be extended in several ways.
Different variations of GSEA will be considered. Along these
lines, we note that the proposed integrative framework is general
enough to integrate most existing variations of GSEA approaches
summarized in [1] with minimal amount of modification. Also,
it should be possible to integrate DGCS and gene-subnetwork
discovery. Both GSEA and gene-subnetwork discovery [18, 8]
can discover collections of genes, either known gene sets [29]
or subnetworks in a molecular network (e.g. protein interaction
network), that show moderate but coordinated differentiation. In
this paper, we integrate DGCS and GSEA as an illustration
of the general framework for integrating scores from different
gene-combination measures and gene-combinations of different
sizes, in addition to the traditional univariate statistic, but the
same framework also applies to the integration of DGCS and
gene subnetwork discovery. Another direction is the use of this
framework for the analysis of (GWAS) SNP data, by following the
methodology proposed in recently work on pathway/network based
analysis of GWAS datasets [33, 2]. Finally, it may be possible to
use constraints on gene-combinations to improve our framework.
In procedureA, for each gene-combination measure and an integer
k, the score of a gene is assigned from all the

(

N−1
k−1

)

possible
gene-combinations. A further extension of procedureA is to only
consider the gene combinations, in which thek genes appear in a
common gene set, e.g. a pathway. Such gene-set-based constraints
may better control false positive gene combinations and improve the
statistical power of the whole integrative framework.
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