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ABSTRACT

Motivation: Gene Set Enrichment Analysis (GSEA) and its variations
aim to discover collections of genes that show moderate but
coordinated differences in expression. However, such techniques
may be ineffective if many individual genes in a phenotype-related
gene set have weak discriminative power. A potential solution is to
search for combinations of genes that are highly differentiating even
when individual genes are not. Although such techniques have been
developed, these approaches have not been used with GSEA to any
significant degree because of the large number of potential gene
combinations and the heterogeneity of measures that assess the
differentiation provided by gene groups of different sizes.

Results: To integrate the search for differentiating gene combinations
and GSEA, we propose a general framework with two key
components: (A) a procedure that reduces the number of scores to be
handled by GSEA to the number of genes by summarizing the scores
of the gene combinations involving a particular gene in a single score,
and (B) a procedure to integrate the heterogeneous scores from
combinations of different sizes and from different gene combination
measures by mapping the scores to p-values. Experiments on
four gene expression data sets demonstrate that the integration of
GSEA and gene combination search can enhance the power of
traditional GSEA by discovering gene sets that include genes with
weak individual differentiation but strong joint discriminative power.
Also, gene sets discovered by the integrative framework share several
common biological processes and improve the consistency of the
results among three lung cancer data sets.

Availability: Source code and datasets: http://vk.cs.umn.edu/ICG/.
Contact: gangfang@cs.umn.edu

1 Introduction

significance after a correction for multiple hypotheses testing [29].
Second, the lists of differentially expressed genes discovered from
different studies on the same phenotype have little overlap [29].
These limitations motivated the creation of Gene Set Enrichment
Analysis GSEA [25, 29], which discovers collections of genes, for
example, known biological pathways [29], that show moderate but
coordinated differentiation. For example, Subramanian and Tamayo
et al. [29] report that the p53 hypoxial pathway contains many
genes that show moderate differentiation between two lung cancer
sample groups with different phenotypes. Although the genes in the
pathway are not individually significant after multiple hypothesis
correction [29], the pathway is. For those familiar with GSEA and
its output, Figure 1 shows the GSEA results for the p53 hypoxial
pathway. GSEA also has the advantages of better interpretability and
better consistency between the results obtained by different studies
on the same phenotype [29]. Ackermann and Strimmer presented a
comprehensive review of different GSEA variations in [1].
Unfortunately, GSEA and related techniques may be ineffective
if many individual genes in a phenotype-related gene set have weak
discriminative power. A potential solution to this problem is to
search for combinations of genes that are highly differentiating
even when individual genes are not. For this approach, the targets
are groups of genes that show much stronger discriminative power
when combined together [10]. For example, Figure 2(a) illustrates
one type of differentially expressed gene combination discovered in
[10]. The two genes have weak individual differentiation indicated
by the overlapping class symbols on both the two axes. In contrast,
these two genes are highly discriminative in a joint manner indicated
by the different correlation structure in the two-dimensional plot, i.e.
they are correlated along the blue and red dashed line respectively
in the triangle and circle class. Such a joint differentiation may
indicate that the interaction of the two genes is associated with the

Microarray technology is an important tool to monitor gene-
expression in bio-medical studies [28]. A common experimental

design is to compare two sets of samples with different ne combination discovered in [10], usually named differential

phenotypes, e.g. diseased and normal tissue, with the goal coexpression [19, 12], in which the correlation of the two genes

discovering differentially expressed genes [17]' §tat|st|cal tes“.n%r]e high in one class but much lower in the other class. As discussed
procedures, such as such as the t-test and significance analysis.0

microarrays [32], have been extensively studied and widely use n Lo, 16],’ existing mu|t|var|§te tests such as HOt,e”"@% [24] ,
. i ) . empster's T1 [9] are not suitable to detect such ‘complementary
Subsequently, multiple testing corrections are usually applied [11].

A comprehensive review of such approaches are presented in [27]gene combinations because they only screen for differences in the

Differential expression analysis based on univariate statistica‘nu'tlva“?te mean VeCtO.rS’ and thus will favor pairs that consist of
tests has several well-known limitations. First, due to the Iowgenes with strong marginal effects by themselves but not the genes

. ) . . . . . like the four in Fig. 2. For clarification, we use differential gene
sample size, high dimensionality and the noisy nature of microarra - A
S ... _tombination search (denoted as DGCS) to refer to the multivariate
data, individual genes may not meet the threshold for statistical : .
data analyses that are designed to detect the complementarity of

different genes, rather than those designed to model the correlation

phenotypes even though the two genes, individually, are not.
Figure 2(b) illustrates another type of phenotype-associated
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Fig. 1. A gene set (p53 hypoxial pathway) with many moderate but

coordinated differential expression (towards the rightathe ranked list).
Figure generated with GSEA software [29]

Including combinations in the ranked list might work for size-

2 combinations [7, 36], but would not be feasible for handling
gene combinations of larger sizes. Furthermore, this explosion
in the number of gene combinations negatively impacts false
discovery rates. Thus, by adding so many gene combinations,
we run the risk that neither groups of genes nor individual
genes will show statistically significant differentiation.

Combining results from the heterogeneous measures used

to score different size gene combinations.Furthermore,
because a gene can be associated with the phenotype either
as an univariate variable or together with other genes as a
combination, the importance of a gene set should be based
on both the univariate gene scores and the gene combination
based scores of its set members. However, different measures
have a different nature, scale and significance, and thus are
not directly comparable (to be detailed in section 3.2). Indeed,
differences exist even between gene combinations of the same
measure but of different sizes. Therefore, the challenge lies
in how to design a framework to combine different measures

N Y Y al Ter (a univariate measuteplus one or more DGCS measures)

7 ot A0 2L o together within the GSEA framework.

5 10_§ YR I b s e

5 051 * N g © 2 ”’_% o I N To the best of our knowledge, no existing work has sufficiently

E1X* &7 3 &l o ° A addressed these two challenges, although recent work presented in

& 05 8 & 057 o Lo - _ [7, 36] have made initial efforts at adding GSEA capabilities to gene

‘ A s dmuhu@e oot e °_®o%p o aug * combination search. More specifically, two approaches are proposed
2 eoymbotas 00 O ena ymboii TeFa. 20 in [7, 36] to help the study of a specific type of size-2 differential

@ M (b) Mo combinations as illustrated in 2(b). The experiments in these two

studies provide some evidence about the benefits of the integration.

However, a more general framework is needed that can also handle
Fig. 2. Two highly differential gene-pairs with weak individual other types of size-2 differential combinations as illustrated in figure
discriminative power. Axes indicate the expression level of indicatedy q) higher order differential combinations (e.g. SDC[12] and the
genes. Different color and shape of markers indicates the two gqyiqtic [35]), and multiple types of differential combinations.
phenotypes. Figures modified from Dettling et al. [10]. This two Contributions: In this paper, we propose a general framework to

types of differential gene combinations are measured respectivel A .
by two measured/; and M- as described in section 2. deress the abov_e_ challepge; for the effective integration of DGCS
and GSEA. Specific contributions are as follows:

1. Agene-combination-to-gene score summarization procedure
(procedure A) that is designed to handle the exponentially
increasing number of gene combinationsFirst, for a given
gene combination measure and a cerkaithe score of a sizé-
combination is partitioned inte equal parts which are assigned
to each of thek genes in the combination. Because each gene
can participate in up tc@f_’ll) size4 combinations, each gene
will be assigned with a score from each of these combinations.
Secondly, an aggregation statistic, e.g., maximum absolute
value is used to summarize the different scores for a gene. With
such a procedure, scores for all the sizgene combinations
are summarized t&V scores forN genes. This procedure can
effectively retain theO(NV) length of the ranked list while
handling gene combinations of sizg% > 2).

2. A score-to-pvalue transformation and summarization
procedure (procedure B) that is designed to integrate
the scores contributed (in procedure A) from different

structure of different genes (such as Hotellin§f'sand Dempster’s
T1 test). A variety of other DGCS measures for complementary
gene combination search are proposed for gene pairs [21, 20] in
addition to the two illustrated in figure 2. Several measures are
designed for higher-order gene combination beyond pairs [12, 35].
These approaches can provide biological insights beyond univariate
gene analysis as shown in [10, 12, 35].

The limitations of GSEA and the capabilities of DGCS motivate
a GSEA approach using gene combinations in which the score of a
gene set is based on both the scores of individual genes in the set
and the scores from the gene combinations in which these genes
participate. Unfortunately, gene combination techniques have not
been used with the GSEA approach in any significant way because
of two key challenges.

e Finding a technique to reduce the vast number of
gene combinations. There are exponentially more gene
combinations than individual genes, i.e. in addition to the
N univariate genes, there ar&® gene-pairs, N> gene- 1 Ackermann and Strimmer [1] suggest that different univarigatistics
triplets, etc. Many variations of GSEA are based on a rankechave similar effect in GSEA and thus, we consider only one aridte
list of the N individual genes as illustrated in Figure 1. statistic rather than multiple of them.
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gene combination measures and from gene combinations
of different sizes. The transformation is based on p-values
obtained from scores derived from phenotype permutations.
Such a transformation enables the comparison of scores from
different measures (either univariate or gene combination
measures) and scores from the gene combinations of different

sizes. Subsequently, among all the p-values of a gene, the bestwhereG; andG; are two genes, ancbrrp (G, G;) represents

is used as an integrated score of statistical significance. the correlation of+; andG; over the samples in sél. As discussed

. Integration of the above two procedures with GSEAMore in [10], M, an.d Ms can Fjete.ct the joint differential expression.of
specifically, after procedures andB, each gene has a single two genes as illustrated in Figure 2(a) a_nd Figure 2(b) respectlve!y.

integrated score. Unlike traditional univariate scores, theseM:l andM_g are used as two re_pre_sentatlve measures for gene pairs.

N integrated scores are based on both the univariate statist'@ther options for gene combination measures for gene pairs have

and the gene combination measures. For the type of GSE een investigated in [20, 2.1]' . .
. i We use the subspace differential coexpression measure (denoted
variations that depend on phenotype permutation st 1

lists of N integrative scores are computed, one for the reaIaSM3) proposed in [12] as the representative for measures forksize-

class labels and the other for tiepermutations. For the type gene combinations, whefecan be any integed(> 2).
of GSEA variations that are based on gene-set permutation
test, only the list of integrated scores for the real class labels
are needed. An independent Matlab implementation of the Wwherea is a set of genes such thatC G and|a| = k. Ra(«)
proposed framework is available for download, which allows and R («) respectively represent the fraction of samplesliand
most existing GSEA frameworks [1] to directly utilize the B overwhichthe genes im are coexpressed/; is a generalization
proposed framework to handle gene combinations with almostof > for detecting the differential coexpressiorkofenesk > 2),
zero modification. i.e. thek genes are highly coexpressed over many samples in one
class but over far fewer samples in the other. Other options for size-k
combinations include the-statistic[35], SupMaxPail{13], etc.
Signal-to-noise ratio (denoted &%) is used as the representative
f traditional univariate statistics as in [29, 25].

My (Gi, Gj) = corra(Gi, Gj)+corrp(Gi, G;)—corraur(Gi, G;) (1)

M3 (Gi, Gj) = corra(Gi, Gj) — corrB(Gy, Gj) 2)

Mz(a) = Ra(a) — Rp(a) 3

. Experimental results that illustrate the effectiveness of the
proposed framework. We integrated three gene combination
measures and the GSEA approach presented in [29] and
produced experimental results from four gene expressior?
datasets. These results demonstrate that the integrative 1a(Gi) = pe(Gi)
. . Mo(Gy) = ——— =22
framework can discover gene sets that would have been missed 0 oa(Gi) +o5(Gy)

without the consideration of gene combinations. This includes where 14 (G:) and i (G:) are the mean expression 6, in

statistically _S|gp|f|cant gene sgt; with moderate dn‘ferentlalClass A and B respectively, andr4(G.) and o5(G) are the
gene combinations whose individual genes have very weak

discriminative power. Thus, a gene combination assistedStandard deviation of the expression Of in class A and B
P : ' 9 respectively. Many other univariate statistics can be found in [1].

GSEA approach can improve traditional GSEA approaches In this paper, these four measures are used as representatives

by discovering additional disease-associated gene sets. Indee&, each category for the illustration of the proposed integrative

the integrative approach also improve traditional DGCS SinCeframework. However, the framework is general enough to handle
most gene combinations are not statistically significant byother measures fromleach of these categories

themselves. Furthermore, we also show that the biologically

relevant gene sets discovered by the integrative framework

share several common biological processes and improve thd METHODS

consistency of the results among the three lung cancer data seig.Section 1, we motivated the integration of DGCS with GSEi&cudssed
two challenges associated with this integration, and rigdéiscribed two

Overview: The rest of the paper is organized as follow. In main procedures in the proposed framework. In this sectiomresent the

(©)

section 2, we describe three gene combination measures used tgehnical details of the two procedures and their integratiith GSEA.

the following discussion and experiments. In Section 3, we present 1 procedureA: combination-to-gene score reduction
the technical details of the two procedures of the general integrative

framework. Experimental design and results are presented
Section 4, followed by conclusions and discussions in Section 5.

iﬁhere are two steps in procedure In step(1), for each DGCS measure
and each sizé- gene combination, its score is divided intoequal parts
and assigned to each of tliegenes in the combination. In st€p), the
scores assigned to a gene from all the size-k combinationkichwhe gene

2 Differential Gene Combination Measures participates are summarized into a single score by an aggredanctions

In this section, we describe three DGCS measures for use in th&
following discussion and experiments. Lét= {a1,az2,..., a4/}
andB = {b1,b2,...,b 5} be two phenotypic classes of samples
of size|A| and|B| respectively. For each sample ihand B, we

such asmaz. Note that, for most univariate statistic and DGCS measures
hich can be either positive or negative (e.g. the four messdescribed in
section 2), the maximum is taken over the absolute values afabies, and
the sign of the score with the highest absolute value is dacbfor later use.
Other simple statistics such as mean or median, or sophigticates such
as weighted summation [34] can also be used. Since the fochssgidaper

have the expression Va!ue of genesG = {G1,G2,...,Gn} is the overall integrative framework, we usexz for simplicity.
First, we have the following two measures (denoted/asand M) We provide a conceptual example of proceddréor a geneG; with a
defined for a pair of genes as presented in [10]: certain DGCS measurk/; . This example considers gene combinations up
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to size4 for illustration purpose. The gene is associated with scassigned
from gene combinations of size 2, 3 and 4 (denoted’as C3 and Cy
respectively) in whichG participates. In stef2), the scores fronCz, C's
andCy are summarized by three maximum values, respectively.

ProcedureA serves as a general approach to summarize{iﬁ)escores
of all the sizek combinations intaV scores for theV genes. If we want to
integrate GSEA with one DGCS measure and a specific/sizgocedure
A by itself can enable most existing variations of GSEA to deawth
almost-zero modification, for statistically significant geets with moderate
but coordinated gene combinations of sizeSuch a GSEA approach can
collectively consider the gene combinations affiliated vétgene set, and
may provide better statistical power and better interpittyafor DGCS, as
will be shown in the experiments.

3.2 ProcedureB: Score-to-pvalue conversion and
summarization

The hypothesis tested when one DGCS measure)fgyis integrated with

GSEA (by procedured) is that, whether a gene set includes significantly

many genes with highly positive (or highly negative) comhbmatased

scores measured hy/,.. An extended hypothesis can be whether a gene set

includes significantly many genes with highly positive (oghily negative)
scores, either univariate or combination-based scores mezhby different
DGCS measures. The biological motivation of this extendedthgsis is
that, a gene can be associated with the phenotype either asiariate
variable or together with other genes as a combination. Tdhissextended
hypothesis, we design a second proced®)etliat can integrate the scores
of a gene from different measures.

Before describing the steps in this procedure. We first disén detail
the challenges of integrating heterogeneous scores fréeraiit DGCS
measures and combinations of different sizes.

1. The different nature of different measures Different measures are
designed to capture different aspects of the discrimingimeer of

Procedure A for Gi

Score-to-pvalue Transformation

S
Original or Score of Gi Transformation fqr a postive score
permuted based on
labels M2 [Apositve 5170]
Original Si 2,0
Permu 1 i N
5/,2,1 == ~V >>7$¥
Permu 2 Si2,2 S5 5s or o2 (AR aa T
- Transformation fof a negative score
Permu 3 Si,2,3
,,,,,, Anegative Si.2.0
Permu 1000 5i,2,1000 -

Fig. 3. lllustration of stepl in procedureB (score-to-pvalue transformation)
for geneG; and measuré/s.

and integration of the scores of different measures and catiois of
different sizes. There are three major steps in procefure

3.2.1 Step 1: Score-to-pvalue transformation Consider a concrete
example. For a gené&’; and a measuré/,, procedureA computes a
single summarized score. In this step, the original phenatigss labels are
permutated say000 times, and for each permutation, the same procedure
is applied, and a corresponding score@rand M is computed. We denote
the score of7; and M2 summarized with the original label &5 2 o, where
7 is the gene index, anlindicates the measure afdneans it is the score
based on the original label. Similarly, we denote the scavespeited in each
of the permutation a$; 2 ;, wherel < j < 1000.

These1001 scores are organized in the table on the left in figure 3.
The 1000 scores computed in thE)00 permutations can be considered as

a gene or a gene combination between the two phenotypic slasseihe nyll-distribution for genes; and measuré\fz, and a p-value can be
Signal-to-noise ratioN/p), a univariate gene-level statistic, measures ggtimated forS; 2.0. Specifically, if S; 2.0 is positive, the p-value is the
the difference between the means of the expression of a génewo yatig of the number of scores that are greater or equa;te, and the

classes. In contrasl//», a differential coexpression measure for a pair yymber of scores that are positive. Similarlysf 2 o is negative, the p-

of genes describes the difference of the correlations ofne-gair in
the two classes. Thus, for a gene, the score of itself measyréd,
and the score assigned and summarized from(ﬂﬁlél) size-2 gene
combinations measured iy, are not directly comparable. Similarly,
the scores of different DGCS measures can also have a diffeaeure,
e.g.M; and M5 as illustrated in figure 2.

2. The different scales of different measuresDifferent measures also
have different ranges of values. For example, the rang®/ef M1,
M, and M3 are[—o0, oo, [—3, 3], [-2, 2] and[—1, 1] respectively.
Thus, they are not directly comparable.

3. Differences in significance between different measuregven after
we normalize the scores of different measures to a single rang

different measures have different statistical significaice example, a
normalized)M score of0.8 may be less significant than a normalized
M; score of 0.5, if there are many genes with normalidég score
greater thar)).8 in the permutation test [29], but very few genes with
normalizedM; score greater thafl.5 in the permutation test. Note
that, such differences in statistical significance alsetexbetween gene
combinations of different sizes, even for the same measure ffek
subspace differential coexpression measuggas an example. A score

of 0.5 for a size-2 combination may not be as significant as a score of

0.5 for a size-3 combination as discussed in [12].

To handle the above heterogeneity, we propose a scoreatagv
transformation and summarization procedure that can enabt®thparison

e
say [—1,1], they are still not comparable because the scores of

value is computed as the ratio of the number of scores whicheasedr
equal toS; 2 o and the number of scores which are negatidote that,
such a score-to-pvalue transformation is done for b$th o and each
of S;2.5 (1 < j < 1000), if the GSEA approach to be integrated is
based on phenotype permutation test [31]. Otherwise, Shly o needs
to be transformed to p-value and will be used by the GSEA aphem
that are based on gene-set permutation [31]. In this papeiljus&ate the
proposed framework using the GSEA approach presented byaian
and Tamayo et al. [29] which is based on phenotype permutatin t
Essentially, stepl transforms the heterogeneous scores of a gene
measured by different measures into their correspondingfisigimce values,
which are comparable to each other although their originalegare not.

3.2.2 Step 2: P-value Summarization Suppose that there a@
different measures to be integrated, one of which is a umit@statistic, and
the others are different DGCS measures for which we consaiebmations

of sizes up toK. After stepl, each gene has a p-value for the univariate
measure and up t& p-values for each size of gene combination for each
measure. In step, the best p-value associated with a gene is selected as the
integrated significance.

2 Treating positive and negative scores separately folldwespractice of
GSEA [31]

3 "Best” means it is the lowest raw p-value or the highestogio
transformed p-value
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Essentially, procedureB integrates the scores of different DGCS
measures for a gene and the univariate statistic of the geaeaisingle
p-value. Such a statistical significance-based integratioheterogeneous
scores enables the comparison and thus the ranking of alNtlgenes.
However, this ranked list does not maintain the originalciomality of the
integrated scores of each gene. In particular, most unteasiatistics and
DGCS measures (e.g. all the four measures described in s@jtican be
either positive or negative. Such directionality inforroatis lost in stepl
and2 because the p-value is non-negative. Next, we describeddtap to
maintain the directionality in the integration.

3.2.3 Step 3: Maintaining directionality associated with the

integrated p-values In the simple case, the measures to be integrated

capture the same type of differentiation between the two piype classes,
e.g.M> andM3. Suppose there are two ger@sandG';, whose integrated
p-values are transformed respectively from two scores medsoy Mo

only modification to GSEA is the elimination of the initial GSEgtep
to generate the scores, simulated and actual, that measuleviieof
differentiation between genes across different phenatyfidie proposed
integrative framework is implemented as a Matlab function i(ake at
http://vk.cs.umn.edu/ICG/), independently from the GSEsfework to be
integrated in this paper [29]. As summarized by Ackermann arichBter
[1], hundreds of variations of GSEA are being used by difiemesearch
groups. This independently implemented integrative framkewean be
easily applied to other variations of GSEA.

Because of space limitations, readers interested in thdlgdetathe
proposed approach are referred to the technical report [14]

4 Results

In this section, we present the experimental design and results
for the evaluation of the proposed integrative framework. We first

and Ms in step2. The signs of these two scores are comparable to eactyoyide a brief description of the data sets and parameters used in

other, because both/y and M3 capture the change of coexpression of a

combination of genes. Thus, we simply use the signs of thessda®s as
the signs associated with the integrated p-value§'oand G ;. Similarly,
we associate a sign to all th& integrated p-values. And thes¥ p-
values with associated signs can be used to rank\thgenes based on
their significance as well as their direction of differetita, i.e. p-values
associated with positive signs are ranked with descendigigifisance,
and afterwards, p-values associated with negative sigaganrked with
increasing significance.

In the other case, if the measures to be integrated captdeeatit types
of differentiation between the two phenotype classes, treztibnality can
not be fully maintained. For example, suppose there are tweyén
and G, whose integrated p-values are transformed respectivety fwo
scores measured hyly and M in step2. The signs of these two scores

are not comparable, becaus#, captures the change of mean expression,
and M captures the change of coexpression of a combination of genes

Specifically, up-regulation of7; can be associated with either high or low
coexpression of another gene-combination in whithparticipates. Thus,
it is not reasonable to follow the same strategy to associgte $o the NV
integrated p-values. If we know the correspondence of thesspf different
genes in advance, e.g. the up-regulatiorGaf is associated with the low

coexpression of7o and G3, then the signs can be maintained. However,

because it is not realistic to assume such prior knowledgepragose the
following heuristic approach which has proved a workableitsan for our
initial experiments. Specifically, since the focus of steps to integrate
different DGCS measures in addition to the univariate statid/g, we

consideredM, as the base measure. For the integrated p-values that are

transformed from scores measureddy in step2 (say there are of them),
we use the signs of these M scores for thev integrated p-values. For the

the experiments. Second, we describe and discuss the comparative
experiments to study whether the integration of DGCS and GSEA
(denoted as DGGSGSEA) improves both DGCS and GSEA. The
two major evaluation criteria are the statistical power to discover
(additional) significant results, and the consistency of the results
across different datasets for the study of the same phenotype classes

4.1 Data sets
The four datasets used in the experiments are described as follows:

1. Three lung cancer datasets respectively denoted as Boston [4],
Michigan [3] and Standford [15]: all the three data sets consist
of gene-expression profiles in tumor samples from respectively
62, 86 and 24 patients with lung adenocarcinomas and provide
clinical outcomes (classified as "good” or "poor” outcome).
The two phenotypic classes in these three datasets are denoted
asA andD as in [29].

2. A data set from the NCI-60 collection of cancer cell lines for
the study of p53 status [26] (denoted B§3 data set): the
mutational status of the p53 gene has been reported for 50 of
the NCI-60 cell lines, with 17 being classified as normal and 33
as carrying mutations in the gene. The two phenotypic classes
in this dataset are denoted &8U 7 andW T as in [29].

All four datasets were downloaded from the GSEA weBf@],
and were already preprocessed as described in the supplementary

signs of the othelV — w genes, we assign positive signs to all of them once file of [29]. For all four data sets, we use the gene sets ftonin

and negative signs to all of them a second time. Correspolyliwg have
two ranked lists similar to the simple case described above.

Note that, if the directionality of differential measuresidze preserved,
the power of this approach will be enhanced. To deal withithk@ton where
signs are not comparable, other approaches will be explored.

3.3 Integration with GSEA

From the above description of proceduteand B, we know that, if only
one DGCS measure is used in the GSEA framework, only proceduse
needed. If one or multiple DGCS measures are integrated tegeith the
univariate statistid/y in the GSEA framework, procedui® is needed in
addition. In the first case, the integrative framework owtpatranked list
of N scores with associated signs for the original class labd, 1800

lists corresponding to th#000 permutation tests. In the second case, we

have two sets 0f001 lists respectively for the two rounds of maintaining
directionality in ste@ in procedureB.

In either case, th&001 ranked lists along with the appropriate parameter

settings and specification of gene sets can be used to run GBEA

MSigDB* as in [29], as well as the same parameters.
4.2 Differential gene-combination measures

We consider one univariate statistidl/¢), and three gene-
combination measuresM;, M. and Ms) in our experiments.
These four measures are described in sectioh2.and M, are
defined only for size-2 combinations. Fbfs, we considered gene-
combinations of siz€-and size3 for the illustration of concept.

4.3 QI1: Does GSEA-assisted DGCS improve traditional
DGCS?

In this section, we study whether the question (Q1) of whether
integration of DGCS and GSEA can improve traditional DGCS.
For this comparison, we consider the integration of DGCS and
GSEA as a GSEA-assisted DGCS approach. We first apply

4 http://www.broadinstitute.org/gsea/
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Table 1. Number of gene combinationsith moderate but coordinated differential gene combinations, even
FDR less thar0.25 discovered from the four though the combinations are not significant by themselves as shown
data sets by each combination measure in table 4.3. This comparison demonstrates that traditional DGCS,
similar to univariate gene analysis, has limited statistical power, and
Boston Michigan Stanford P53 DGCSPGSEA can increase that power.

4.3.2 GSEA-assisted DGCS has better result consistency

My 0 2 0 0 than traditional DGCS We further compare DGCS and
%2 %‘5 i g é DGCSBGSEA by studying the consistency of their results on the
3

first three data sets that are all from lung cancer studies, as done in
[29]. For DGCS,M; discovered genes on Michigan but nothing
from Boston and Stanford)/> discovered645 combinations on
Boston but only 1 and 2 from Michigan and Stanford, respectively,
and there are no common ones between the 645, 1, and 2 gene
combinations; M3 discovered10 genes on Boston but only

Table 2. Number of gene setwith FDR less than0.25
discovered from the four datasets by integrating GSEA
with each of the three combination measures. One or

multiple biological process(es) are indicated as supgscri gene on Michigan and nothing from Stanford, and the 10 and 1
from which we can observe the consistency across three combinations do not overlap. The inconsistent results make the
lung cancer data setsd: apoptosis related pathways{: follow-up biological interpretation very difficult.

responses to hypoxia: sppaPathway!: insulin-signaling In contrast, when the three DGCS measures are integrated
sets; X: oxidative-phosphorylation related set&: p53- with GSEA, several consistent themes can be observed: (i)

related sets. The names of the discovered gene sets and their Apoptosis related pathways (marked.#yn table 4.3):M; ©GSEA
FDRs are available in the technical report[14]. discovered four gene sets on Boston, three of which are known
to be closely related to cancer and specifically to apoptosis, i.e.

Boston Michigan Stanford P53 nfkbpathway ST-Gag-Pathwaynd TNF-Pathway This apoptosis
theme is shared by the gene sets discovered/hyGSEA from
M, ®GSEA  44) 2(A) 4(A) 13(PX) Michigan and Stanford, i.élonocyte-AD-PathwayivnefPathway
My®GSEA 1H)  7(HS) 4HS) g deathPathway and caspasePathway These apoptosis related
Ms®GSEA 0 1D 3(X) 2(P) pathways are enriched with the lung cancer samples with good

outcome, which makes sense biologically and also corresponds
to the proliferation theme supported by the gene sets enriched
with the samples with poor outcome as reported in [29]. Several
other examples of the result consistency, as indicated by other
the traditional DGCS approaches on the four datasets to finduperscripts in Table 4.3, are in the technical report. This
statistically significant gene-combinations. We denote the thregomparison demonstrates that traditional DGCS, like univariate
DGCS approaches respectively with the names of the thregene analysis, has poor result consistency across the three lung
measures, i.eM1, M, and Ms. Second, we apply the integrative cancer data sets, and DGESSEA can improve its consistency
framework, in which GSEA is integrated respectively with the by integrating DGCS measures with GSEA.

three DGCS measures, to find statistically significant gene sets

with moderate but coordinated differential gene-combinations. We4'3'3 GSEA-assisted DGCS with dn‘ferem D,(,BCS measures
mplement each other The number of significant gene sets

denote the three instances of the integrative approach respective ) .
as My ©GSEA, M,®GSEA andMg@GgEA Thzrﬁ) we comgare Iscovered by the three versions of GSEA varies, 18 GSEA
the results ofMl, M, and Ms, respectively with ‘the results of and M,®GSEA discovered a bit larger number of significant gene

M, ®GSEA, M,®GSEA andM;®»GSEA sets tham/3 GSEA. However)M; ®GSEA still discovered several
Table 4.3 lists the number of statistically significant gene gene sets that are not discovered iy @GSEA or M>®GSEA,

combinations discovered respectively by the three measures on ea 2 fong %ene set fr%rp the dMichigaﬂb(:ataGséeé:n&thrgesféoAm the
of the four datasets, with an FDR threshold @£5. Table 4.3 tzn]\zr G?ZAS?. IS |n||cates that, & ! 2.@ diff
lists the number of statistically significant gene sets discovered bfim 30 ave complementary perspectives, 1.e. different

integrating GSEA respectively with the three DGCS measures c”qombination measures capture different aspects of the differepce
each of the four datasets. also with the same FDR thresholdsf between the phenotype classes (recall the two types of combinations
’ g] Figure 2). This also demonstrates the proposed framework is

Three major observations can be made by comparing the two tables. . .
general enough to integrate any type of DGCS with GSEA.

4.3.1 GSEA-assisted DGCS has better statistical power than . .

traditional DGCS  Table 4.3 shows that, in most casgs, traditional * Q2: Does DGCS-assisted GSEA improve GSEA?

DGCS discovers very few (less than 3) statistically significantin this Section, we want to answer the question (Q2) of whether

gene combinations (although, and M3 have645 and 10 gene-  the integration of DGCS and GSEA can improve traditional GSEA.

combinations on the Boston data set, none of them have FDRor this comparison, we consider the integration of DGCS and

lower than0.10). In contrast, table 4.3 shows that the integration GSEA as a DGCS-assisted GSEA approach. We design three sets

of GSEA with the three combination measures discover multipleof comparisons. Firstly, we compare the traditional univariate-

significant gene sets in most of the cases. This difference impliestatistic based GSEA (denoted && ®GSEA) with the integrative

that the discovered statistically significant gene sets include manframework where one gene-combinations measure is used instead
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of M,. Specifically, we compare the gene sets discoveredwo pathways are discovered bWo®HGSEA, My GGSEA,
by My®GSEA with the gene sets discovered By, ®GSEA, Mo2@GSEA andMy3®GSEA. The curated gene sg2Pathway
Mo®GSEA andM3;®GSEA. Then, we compark/,®GSEA with contains the genes related to the G2/M transition, which is shown
the integrative framework where one gene-combinations measur® be regulated by p53 [30], a well-known cancer-related gene. The
is used in addition toMy, i.e. Mo1®GSEA, Mo2®GSEA and  curated gene sajsk3Pathways the signaling pathway of GSK-
Mo3BGSEA. Furthermore, we also study the integration of multiple 3-3, which has been shown to be related to different types of
gene-combinations measure in addition\fg, €.9. Mo123 GSEA. cancer[5, 23]. These two cancer-related pathways are discavered
Figure 4 displays the statistically significant gene sets discovered/,:23 GSEA but not byM,®&GSEA, Mo @GSEA, Mo GGSEA
with different (combinations of) measures respectively fromand Mo3®dGSEA. This indicates that different members of these
the four datasets. An FDR threshold @f25 is used as two pathways are differential between the two phenotype groups in
in [29] for comparison purpose. The results presented indifferent manners, i.e. the differentiation of some genes is captured
[29] are exactly reproduced, i.e. the gene sets listed in théy M,, some byM;, some byM,; and some byMs. These two
rows corresponding toMydGSEA. In each of these four pathways can be discovered to be statistically significant only when
figures, we consider the traditional univariate-statistic basedhese measures are used together in the integrative framework. This
GSEA (My®GSEA) as the baseline, and compare it with the demonstrates the benefits of the proposed framework for integrating
rows corresponding toM1®GSEA, M>@GSEA, M3®GSEA, multiple DGCS measures with a univariate measure.
Mo1®GSEA, Mo2@®GSEA, Mos®GSEA and Moy, 1,2,3GSEA. It is worth noting that, the gene sets discovered by the integrative
From these comparisons, the following observations can be made framework with multiple measures are not necessarily a superset
of those discovered by integrating each individual measure with
4.4.1 DGCsS-assisted GSEA discovers additional significant GSEA since, when different DGCS measures are integrated
gene sets First, we compare the rows corresponding to with GSEA, the null-hypotheses tested in the GSEA framework
M1 ®GSEA, M>®GSEA, M3;»GSEA with the rows corresponding are correspondingly different. The highlight of the integrative
to Mo@GSEA. We bolded the additional gene sets that are onlyframework is that, additional gene sets can be discovered when
discovered byV/1 ®GSEA, M>GGSEA, M3BGSEA. For example,  different DGCS measures are used to assist the traditional univariate
with My®GSEA, no statistically significant gene sets have beenstatistic-based GSEA. In practice, these different versions of GSEA
enriched with class A in the Boston data set. In contieStbGSEA  should be used collectively.
discoveredi gene sets, three out of which (discusseddt) are 4 4 5 pGCs-assisted GSEA discovers gene sets with lower
related to apoptosis which is consistent with the results on Michigafprg
and Stanford. On the Michigan datasétf, >GSEA discovered Even when a gene set is discovered both before and after a

a gene setheta-Alanine-metabolisnthat is not discovered by pGes measure is integrated into the framework, we can observe
Mo®GSEA. This gene set is related to the responses of NypoXigge,erg| interesting cases where the FDR of a gene set becomes much
which is consistent with the results on Boston and Stanford. It i§o\yer after the integration. We bolded the FDRs that significantly

worth noting that, although most studies did not report statisticallydecreased when they are discovered by the integrative approach.
significant gene sets on the Stanford dataset due to the very smad},. example Mo123@-GSEA, in whichMo, M1, M, and M; are

sample size M GGSEA, M>®GSEA, Mz BGSEA respectively  iyreqrated together, discoveps3hypoxialPathwawvith an much
discovered 4, 4 and 3 significant gene sets. These additiongl,or FDR of 0.00095. two-order lower thanM,-GSEA. This
gene sets were discovered because the three DGCS measufgs mple indicates that several memberspsBhypoxialPathway
capture different types of the differentiation between the WOy, e \weak individual differentiation measured by, but have
phenotype classes, compared to the traditional univariate dil‘ferentiq,}10re significant differentiation when they are measuredMsy.
expression-based GSEA. This and other similar examples demonstrates the benefits of the

Second, we compare the rows correspondingfg ©GSEA,  rqn0sed framework for integrating multiple DGCS measures.
Mo2BGSEA, Mos®GSEA with the rows corresponding to

Mo@GSEA. We bolded the additional gene sets that are On|y4.4.3 DGCS-assisted GSEA further improve the congistency
discovered by the integrative approach. For example, on the BostoC'0SS the three lung cancer data setsAs presented in [29],
data set,M, based GSEA discovered 8 gene sets. In additionMo®@GSEA discovered and 11 gene sets respectively from the
Mo1®GSEA discovered theproteasomePathwagene set, and Boston and Michigan data sets, and 5 of the 8 in Boston and 6 of the
Mo2®GSEA discovered thes3-signalinggene set. Both ubiquitin- 11 in Michigan are common. The three unmatched gene sets that

proteasome pathway and p53-signaling pathway are well-know@'€ discovered in Boston but not in Michigan &&UT-DOWN
cancer-related pathways that are also specifically related to lunfEY-DOWNandCellCycleCheckpoininterestingly, the latter two

cancer [22, 6]. (Additional examples are in the technical report./2€ discovered from both the Boston and the Michigan data sets

The gene sets that are discovered by DGCS-assisted GSEA but ngY Moy DGSER. Such observations suggest that DGCS-assisted

by Mo-GSEA illustrate the benefits of using DGCS to assist GSEA.GSEA also provides new insights to the consistency between
Next, we also observed that integrating multiple DGCs different data sets.

measures can further discover statistically significant gene setg.4.4 Additional issues of multiple hypothesis testing Because

For illustration purpose, we compare the rows correspondinglifferent combinations of measures are used in the integrative

to Mo1®GSEA, Mp2®GSEA, Mys®GSEA with the rows framework, additional issues of multiple hypothesis testing arise,

corresponding toMop123PGSEA. My123BGSEA discovers the

g2Pathwaygene set and thgsk3Pathwaygene set, respectively 5 The CellCyclePathwaydiscovered on Michigan and theell-cycle-

from the Boston and the Michigan dataset. Neither of thesecheckpointdiscovered on Boston are both cell-cycle related gene sets
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Datasets Boston Datasets Michigan
Class A D Class A D
Integration Gene sets FDR Gene sets FDR Integration Gene sets FDR Gene sets FDR
MO p53hypoxiaPathway 0.0496 MO badPathway 0.0097 Glycolysis_Gluconeogenesis 0.0058
(<] INSULIN_2F_UP 0.1183 (<] amiPathway 0.0115 vegfPathway 0.0283
GSEA HTERT_UP 0.1275 GSEA cskPathway 0.0115 INSULIN_2F_UP 0.1472
[Baseline) LEU_DOWN 0.1439 (baseline ll12Pathway 0.0536 insulin_signalling 0.1702
Aminoacyl_tRNA_biosynthesis | 0.1443 no2il12Pathway 0.0764 p53_signalling 0.1790
GLUT_DOWN 0.1458 GO_ROS 0.0929 HTERT_UP 0.1875
tRNA_Synthetases 0.1571 HEMO_TF_LIST_JP 0.1984 Glutamate_metabolism 0.1997
cell_cycle_checkpoint 0.2157 G_alpha_i_Pathway_ 0.2091 ceramidePathway 0.2042
M1 nfkbPathway 0.069 tob1Pathway 0.2143 tRNA_Synthetases 0.2247
53] STGaqPathway 0.098 ctladPathway 0.2313 Aminoacy|_tRNA_biosynthesis 0.2294
GSEA TNF_Pathway 0.101 M1EBGSEA MONOCYTE_AD_PATHWAY 0.0815
mRNA_splicing 0.226 M2BGSEA beta_Alanine_metabolism 0.1527 epoPathway 0.0851
M25GSEA nfatPathway 0.013 egfPathway 0.1691
M35 GSEA sppaPathway 0.1758
MO,M1 cell_cycle_checkpoint 0.0258 pparaPathway 0.2164
@® proteasomePathway 0.0481 mtorPathway 0.2364
GSEA INSULIN_2F_UP 0.0491 drugResistance&metabolism 0.2379
LEU_DOWN 0.0714 M3 GSEA insulin_signalling 0.1949
GLUT_DOWN 0.0828 MO, M1, I112Pathway 0.0000 raccycdPathway 0.0424
GLUCOSE_UP 0.2480 ® ctladPathway 0.0151 cellcyclePathway 0.0950
MO,M2 Gal2_Pathway 0.230 Aminoacyl_tRNA_biosynthesis 0.0448 GSEA GO_ROS 0.0181 BRC_estrogen_signalling 0.0965
® tRNA_Synthetases 0.1036 HEMO_TF_LIST_JP 0.0360 p53_signalling 0.1112
GSEA cell_cycle_checkpoint 0.1083 ADULTVSFETAL_LIVER_GNF2 | 0.0594 radiation_sensitivity 0.1192
proteasomePathway 0.1432 SIGPIP3SignalingInBlymph 0.0816 GLUCO 0.1376
p53_signalling 0.2035 toblPathway 0.1137 cxcrdPathway 0.1378
MO,M3 p53hypoxiaPathway 0.0098 terPathway 0.1151 rasPathway 0.1442
® tRNA_Synthetases 0.0139 ST_G_alpha_i_Pathway 0.1226 LEU_DOWN 0.1770
GSEA Aminoacyl_tRNA_biosynthesis 0.0849 cerSPathway 0.1893
MO0,1,2,3 p53hypoxiaPathway 0.0009 ST_JNK_MAPK_Pathway 0.2262
(5] tRNA_Synthetases 0.02820 MO,M2 ctla4Pathway 0.0781 BRC_estrogen_signalling 0.1955
GSEA g2Pathway 0.15204 @ deathPathway 0.215
GSEA cxcr4Pathway 0.2403
MO0,M3 SIGBCRSignalingPathwa 0.2159 GLUCO 0.0408
LEIEEEE HEE FEG’SEA ¢ £ Y BRC_estrogen_signalling 0.1289
Class MuT WT
- MO,M1, 1112Pathway 0.0241 deathPathway 0.0019
Integration Gene sets FOR Gene sets FDR M2,M3 ctladPathway 0.0580 BRC_estrogen_signalling 0.1344
Mo rasbathway | 01714 pS3hypoxiaPathway o S SIGBCRSignalingPathway 0.0871 GLUCO 0.1709
@ hsp27Pathway © GSEA tob1Pathway 01371 BRCA_UP 0.1854
EEER p53Pathway o terPathway 0.1590 raclPathway 0.1874
(baseline) o oPs3uR 0.0130 gsk3Pathway 0.2099
radiation_sensitivity 0.0780 raceycdPathway 02431
M1 ucalpainPthwy 0.0615 Oxidative_phosphorylation 0.0165
(7] Citrate_cycle_TCA_cycle 0.0291
GSEA ATP_synthesis 0.0712 Datasets stanford
Type_lll_secretion_system 0.0712 Class A D
41\:’:);::::3\’ 81282 Integration Gene sets FDR Gene sets FDR
Krebs-TCA_Cycle 0.1132 LI e (@2
human_mitoDB_6_2002 0.115 (baseline)
Electron_Transport_Chain 0.1197 M1 € GSEA hivnefPathway 0.0168
MAP00195_Photosynthesis | 0.1351 deathPathway 0.0197
mitochondr 0.1419 nthiPathway 0.1443
M2EGSEA athway 0.1664
M3EGSEA ATP_synthasis 0237 M2 5 GSEA RAR_UP 0.1587 sppaPathway 0.1752
T IIl_secretion_ system 0.2327 Pyruvate_n boli 0.2126 crebPathway 0.1758
ype_lll_: _SY:
MO, M1 pitx2Pathway 0.0527 inflamPathway 0.1199 M3 © GSEA VOXPHOS 0.1246 TESTIS_GENES_FROM 0.1871
DGSEA ngfPathway 0.1025 badPathway 0.1946 CR_DNA_MET&MOD 0.1792 _XHX_AND_NETAFFX
MO,M2 ngfPathway 0.0628 P53_UP 0.0090 SIJEELE
BGSEA igflPathway | 0.1120 cytokinePathway 0.2198 GSEA — ;
e nozill2Pathway 0.0505 Mo,M2 G RAP_UP 0.1022 Pyrimidine_metabolism 0.1589
s3] badPathway 0.1346 GSEA
GSEA ST_Ga12_Pathway 0.1656 MO,M3 B KRAS_TOP100_CONTROL 0.1683
ckiPathway 0.2465 GSEA CR_DNA_MET_AND_MOD 0.1979
M0,1,2,3 rarrxrPathway 0.1421 M0,1,2,3 & pyk2Pathway 0.2031
PGSEA badPathway 0.1825 GSEA

Fig. 4. Common captions for the four tables Statistically significant gene sets discovered by difiefeombinations of) measures from each of the four
data sets. The first row of each table shows the name of the efatarsl the second row indicates the two phenotype clasghe uata set that a gene set
can be enriched with. The first column indicates the measus insthe integrative framework. For each data set and eachhcation of) measure(s),
we list the names of the statistically significant gene setstha corresponding FDRs for both the classes. The traditionivariate-statistic based GSEA
(MO®GSEA) is considered as the baseline. For the other rows, lydisiha gene set if it is only discovered by the integratippeoach (with bolded name),
or it has a non-trivially decreased FDR when it is discovéngthe integrative approach (with bolded FDR).

even though multiple hypothesis testing has been addressed fd,123@GSEA discoversp53hypoxialPathwayfrom the Boston

each measure via the phenotype permutation test procedure in tlata set with a low FDR d8.00095, and M123GSEA discovers
GSEA framework proposed in [29]. To investigate this, we designeddeathPathwayfrom the Michigan data set with a lower FDR of
experiments with 4 of the5(= 2* — 1) possibilities of integrations,  0.00197. We also did additional permutation tests, in which we
i.e. Mo1®GSEA, Mox®GSEA, Moz ®GSEA andMy123BGSEA. generate random gene sets with the same sizes as the sets in
Even using a collective (meta-level) multiple hypothesis correctionMSigDB (>, and do the same set of experiments as shown in
many discovered gene sets would still be significant. For examples,
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Figure 4. The FDR values of the random gene sets computed in the[g]H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee, and T. Ideker. Network-based

integrative framework are mostly insignificant (higher ti@ayﬁ). classification of breast cancer metastasisl. Sys. Big.3:140, 2007.
. . [9]A. Dempster. A high dimensional two sample significance t&te Annals of
5 Discussion Mathematical Statisticppages 995-1010, 1958.
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combination search and gene set enrichment analysis for biq11]s. budoit, J. Shaffer, and J. Boldrick. Multiple hypothesis testh microarray
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