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ABSTRACT
Motivation: Discovery of novel regulatory relationships from the
analysis of genome-wide expression data is a common goal of
expression analysis. Among the methods applied to this problem
are algorithms that make use of directed probabilistic graphs. To
successfully infer regulatory relationships, these algorithms require
perturbations of the network, produced by either experiments or
naturally occurring genetic variation. While this critical point is well
appreciated, there has been little theoretical work concerning the type
of perturbations which provide the maximum resolution for arbitrary
regulatory relationships.
Results: We derive the sufficient set of independent perturbations
that provide maximum resolution for inferring directed cyclic networks.
We also present the algorithm EXPLoRE (EXpression Penalized
Likelihood Regulation Extractor), a method which makes use of our
sufficient conditions to infer the direction of regulatory relationships
in sparse networks. EXPLoRE works by incorporating perturbations
of expression arising from cis-expression Quantitative Trait Loci (cis-
eQTL) and, by identifying the signature of each cis-eQTL propagated
through the regulatory network, the algorithm reconstructs directed
relationships based on an inferred undirected graph. We demonstrate
that this method can identify the correct regulatory relationships
for both cyclic and non-cyclic cases. Using simulations, we also
demonstrate that EXPLoRE performs well for sample sizes that
are typical for genome-wide expression and genotype data. We
also analyze expression and genotype data for individuals from
the International HapMap Project and extract a putative regulatory
network involving genes with roles in apoptosis, cell-signaling, and
cancer.
Availability: The MATLAB code used for EXPLoRE is available at
http://mezeylab.cb.bscb.cornell.edu/Software.aspx.

Contact: jgm45@cornell.edu

1 INTRODUCTION
Network analysis is commonly applied to genome-wide gene
expression data to infer the set of regulatory relationships among
genes (Chen et al., 2008; Emilsson et al., 2008). Probabilistic
graphical techniques, which model genes as nodes and the
conditional dependencies among genes as edges, are among the
most frequently applied methods for this purpose. A diversity of
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such approaches have been proposed including Bayesian networks
(Friedman et al., 2000; Peer et al., 2001), undirected networks
(Margolin et al., 2006; Schafer and Strimmer, 2005), and directed
cyclic networks (Li et al., 2006; Liu et al., 2008; Neto et al., 2008).
The popularity of these methods derives, in part, from the structure
of these models that is well suited to algorithm development. This
is especially true for undirected networks (Kraemer et al., 2009).
In addition, the network representation of these models can be
used to construct specific biological hypotheses about the processes
governing the activity of genes in a system (Friedman et al., 2000).
As an example of this latter property, genes connected by an edge
may indicate (at least) one of the genes is regulated by the other.

In graphical network inference, a theoretical principle that is now
well appreciated (Schadt et al., 2005; Rockman, 2008; Neto et al.,
2008; Liu et al., 2008) is that ‘perturbations’ of the network
can be leveraged to reduce the set of possible networks that can
equivalently explain gene expression. Since equivalent models can
indicate conflicting regulatory relationships, perturbations are often
necessary to extract regulatory relationships with any confidence.
Perturbations can be experimental or natural. The latter, for
example, can be caused by genetic polymorphisms in a population,
which alter the expression of genes across a population sample.
These are considered expression quantitative trait loci (eQTL)
(Rockman, 2008). Efficient algorithms have been proposed that can
correctly resolve a sparse undirected graph (Margolin et al., 2006;
Kraemer et al., 2009; Anjum et al., 2009; Schafer and Strimmer,
2005). While useful, undirected graphs do not indicate the direction
of regulation in a network. Such information is highly desirable
when the goal is to infer which genes regulate which other genes and
to develop specific biological hypotheses concerning the outcome of
an experiment, e.g. if a gene is manipulated, what are the expected
downstream effects?

For all directed graphical modeling, approaches for learning
networks fall into one of two categories: 1) search through network
space, and for each network, compute a score based on the fit
of the network given the data (Friedman et al., 2000; Schadt
et al., 2005; Li et al., 2006; Liu et al., 2008), or 2) identify all
conditional independencies directly from the data, then use these
conditional independencies to reconstruct a network (Spirtes et al.,
2001; Kalisch and Buhlmann, 2007; Richardson, 1996; Neto et al.,
2008). For the former, searches with reasonable coverage of the
model space are not computationally feasible for larger networks.
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While efficient searches for larger networks are possible with the
latter, given a sparse graph, these methods tend to be very sensitive
to sampling variation for tests of conditional dependence (Neto
et al., 2008). There is also a tendency for sampling variation to mask
true conditional dependencies with these latter methods. To our
knowledge, a limitation for both categories is there has been little to
no theoretical work concerning the sufficient set of perturbations to
allow inference of arbitrary directed graphs, which maximally limits
the set of equivalent models. Limiting the set of equivalent models
is of particular concern in cases where the true network has cyclic
structure, where the set of statistically indistinguishable models may
include drastically different topologies.

In this paper, we present theoretical results concerning a minimally
sufficient set of perturbations to infer a maximally limited equivalent
set of network architectures. We demonstrate that for a specific
conditional independence graph (the interaction graph or moral
graph (Lauritzen, 1996)), which can be efficiently estimated with
many different approaches (Meinshausen and Buhlmann, 2006;
Friedman et al., 2008; Kraemer et al., 2009; Anjum et al., 2009;
Schafer and Strimmer, 2005), the structure of this graph including
an appropriate set of perturbations reflects the structure of the
true regulatory graph. A consequence of this result is that, when
such perturbation conditions apply, we do not have to consider the
problem of identifying the Markov blanket or separating set for
each node in the directed graph, to infer the set of edges (Pearl,
2000; Meinshausen and Buhlmann, 2006). In such cases, we can
therefore avoid a computationally demanding step in the class of
approaches which test for conditional independence and dependence
(Friedman et al., 2008). Our theoretical results are derived under the
assumption that there are independent perturbations of the network,
an assumption which seems reasonable, given recent biological
observations of strong local polymorphism associations with gene
expression (eQTL) which are often not in linkage disequilibrium
(Stranger et al., 2007; Doss et al., 2005; Schadt et al., 2003; Lum
et al., 2006).

Using our theory results, we develop a computationally efficient
algorithm that is applicable to sample sizes that are typical
of genome-wide gene expression data. Our algorithm includes
three-steps. First, an association analysis is carried out to
identify local (cis-eQTL) perturbations of gene expression. Second
we pre-process to identify expression phenotypes with strong
conditional dependencies using the ‘glasso’ undirected inference
approach (Friedman et al., 2008), which uses a lasso type penalty
(Tibshirani, 1996) to estimate the conditional dependencies among
the expression phenotypes. In the third step, the effects of cis-
eQTL are used to further resolve the structure of the undirected
graph, again using a lasso-type penalty. Based on our theory
results, we can transform this second undirected graph directly
into a system of regulatory relationships where we capture the
direction of regulation. Our approach therefore mirrors directed
network inference approaches that seek to identify conditional
independencies (Kalisch and Buhlmann, 2007; Richardson, 1996;
Neto et al., 2008; Chu et al., 2009). Given the components of
our algorithm, we have named it EXPLoRE (EXpression Penalized
Likelihood Regulation Extractor).

The effectiveness of our algorithm depends on the assumption

of sparsity (Friedman et al., 2008), as well as the presence of
independent perturbations of the network. Sparsity is an essential
assumption that is implicit in algorithms for both directed and
undirected network inference algorithms (Margolin et al., 2006;
Kalisch and Buhlmann, 2007). The output of our algorithm is a
directed graphical model that falls in a class known as structural
equation models (SEMs), which assume Gaussian errors and allow
for directed cyclic regulation among genes (Bollen, 1989).

2 THE DIRECTED GRAPHICAL MODEL
For p measured gene expression phenotypes and m loci for which
we have genotypes, the directed graphical model of the network has
p + m nodes and (p(p − 1) + pm) possible edges, representing
p(p − 1) possible regulatory relationships among the genes, and
pm possible perturbation effects of loci (eQTL) on each of the
expression phenotypes. Written in matrix notation, the network
model for a sample of n individuals can be represented as:

YnxpΛpxp = XnxmBmxp + Enxp, (1)

where Y is a matrix of gene expression measurements, Λ is a matrix
of regulatory effects, X is a matrix of observed perturbations, B
is a matrix of perturbation effects, and E ∼ N (0,R). Non-zero
elements of Λ and B are edges representing regulatory relationships
and eQTL effects, respectively, where the size of the parameter
indicates the strength of the resulting relationship. We make the
assumption that in the true network model, Λ and B are sparse.
In addition, we assume that R, the error covariance matrix of
expression products, is diagonal, and diag (Λ) = 1, where the
constraint on the diagonal of Λ ensures model identifiability. This
constraint corresponds to a lack of self-loops, since the parameters
representing self-loops are confounded with the error variance
parameters specified by R. These latter assumptions on R and Λ
(i.e. no error covariance or self-loops) are standard, and used by
all popular graphical network inference algorithms, directed and
undirected, proposed to date (Friedman et al., 2000; Schadt et al.,
2005; Li et al., 2006; Liu et al., 2008; Spirtes et al., 2001; Kalisch
and Buhlmann, 2007; Richardson, 1996; Neto et al., 2008; Margolin
et al., 2006). The model depicted by Equation (1) is a completely
observed structural equation model (SEM) (Bollen, 1989).

For a biological network, the model in Equation (1) is a reasonable
representation, if we assume that gene expression measurements
are taken from independent and identically distributed (iid) samples
that have reached a steady-state (i.e. homeostasis), the specific
system of regulatory relationships can be represented using a
system of sparse linear equations, and the distribution of expression
traits across samples is well modeled with a multivariate normal
distribution. Given these assumptions of stationarity and normality,
a linear representation of the system of regulatory relationships in
Equation (1) is reasonable, since a linear transformation preserves
multivariate normality. The representation of eQTL in Equation
(1) is also reasonable, if we similarly assume that the set of
perturbations from eQTL of unknown effect that are feeding into
the gene expression phenotypes can also be modeled using a system
of linear equations.
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3 LIKELIHOOD AND EQUIVALENCE
The conditional log-likelihood of the model defined by Equation (1)
can be written as:

l (Y|X; Λ,B,R) =
1

2
log {det (Σyy)} − 1

2
Tr (ΣS) , (2)

where the full precision matrix Σ and empirical covariance matrix
S are:

Σ =

»
Σyy Σyx

ΣT
yx Σxx

–
=

»
ΛR−1ΛT ΛR−1BT

BR−1ΛT BR−1BT

–
(3)

S =
1

n

»
YTY YTX
XTY XTX

–
, (4)

with the data matrices Y and X re-centered.

We can now define a fully parameterized model matrix Γ as follows:

Γ =

"
ΛR− 1

2

BR− 1
2

#
, (5)

since by definition R > 0, and diag (Λ) = 1, both Λ and B can
be rescaled by the positive square root of the error precision matrix
R−1.

From Equation (3) and Equation (4) the relationship between the
fully parameterized model matrix Γ, and the full precision matrix
Σ is:

ΓΓT = Σ. (6)

This defines a system of homogenous polynomials of degree two
which exactly specifies the relationship between the directed graph
Γ, which may contain no cycles (a directed acyclic graph or DAG)
or may contain cycles (a directed cyclic graph or DCG), and the
moralized undirected graph Σ.

A potential pitfall of modeling expression traits using directed
networks is the problem of likelihood equivalence between models.
Figure 1 presents a simple example that illustrates the problems
raised by equivalence for network inference. In this example, the
true model, which is a linear pathway between four genes w →
x → y → z, is probabilistically indistinguishable from three
other equivalent models. Each of these equivalent models has a very
distinct implication for regulatory relationships among these genes
but they are indistinguishable, regardless of the sample size. To
be able to distinguish between these models, one needs to either
collect time-course data to determine the temporal sequence in
which regulation occurs, or alternatively, perturb the expression
level of these genes in some fashion. A definition of equivalence
based on the form of Equation (2) follows from (Pearl, 2000):

Definition of equivalence: Two sparse directed cyclic graphs
specified by the model in Equation (1), with parameterizations Γ1

and Γ2, are equivalent in distribution iff for all parameterizations
Γ1, ∃Γ2 : Γ2ΓT

2 = Γ1ΓT
1 and for all parameterizations Γ2, ∃Γ1 :

Γ1ΓT
1 = Γ2ΓT

2 .
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Fig. 1. Example of an equivalence class when determining regulatory
relationships without perturbations (eQTL). In this case, the true regulatory
network connecting the four genes (blue) has the same sampling distribution
as the other three incorrect models (red), and these are therefore
indistinguishable.

4 SUFFICIENT PERTURBATIONS
Given the importance of having as small a set of equivalent models
as possible for making meaningful inference, and the necessity of
perturbations for minimizing equivalence classes, it is of interest
to know what will constitute a sufficient set of perturbations, i.e.
to shrink the size of arbitrary equivalence classes as much as
possible. In this section we motivate a minimal class of perturbation
architectures that define a unique directed acyclic graph (DAG),
or unique equivalence class of directed cyclic graphs (DCG), that
can be reconstructed from the empirical covariances in Equation
(4). We do this using three theorems. Theorem 1 is used to define
a linear operator that allows transformations between models that
produce the same precision (inverse covariance) structure, and can
include transformations between models which are not faithful (i.e.
models that have pathological parameterizations, where a richly
parameterized model behaves like a reduced parameterized model).
This equivalent model operator is used in Theorem 2, which
demonstrates that with a sufficient set of perturbations, there are
no DAGs that have equivalent models, and the equivalence classes
for DCGs only contain models with reversed directed cycles. This
theorem defines a sufficient set of perturbations as including at
least one independent perturbation per expression phenotype (i.e.
in genetic terms, this means no pleiotropy). It is important to note
that a sufficient set can contain additional perturbations of these
phenotypes, as long as there exists at least one perturbation for each
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phenotype that is not pleiotropic.

Theorem 3 demonstrates how the set of equivalent DCGs can be
recovered from the precision matrix between expression phenotypes
and loci (the matrix Σyx). This last result is incorporated into our
EXPLoRE algorithm for inferring sparse network structure with a
sufficient perturbation (eQTL) set. Note that while the EXPLoRE
algorithm depends on sparsity for efficient network recovery, the
results of these theorems are general and do not require such a
constraint. In addition, we note in a further Lemma that even in the
case of directed cycles, if we know which phenotype a perturbation
feeds into, we can further reduce the size of the equivalence class to
a unique directed cyclic graph.

Theorem 1: Given two distribution equivalent directed cyclic
graphs, with equivalent parameterizations Γ1 and Γ2, any matrix A
which satisfies Γ1A = Γ2, must be orthonormal (i.e. AAT = I).

Proof: Since Γ1AATΓT
1 = Γ2ΓT

2 , and from the definition of
equivalence, if Γ1 and Γ2 are equivalent, then Γ1ΓT

1 = Γ2ΓT
2 .

Therefore, Γ1AATΓT
1 = Γ1ΓT

1 . Left multiply by ΓT
1 and right

multiply by Γ1, then CAATC = CC, where C = ΓT
1 Γ1 is a

positive definite invertible matrix of rank p. Left and right multiply
by C−1, and AAT = I.

The matrix A can be thought of as a linear operator that
allows transformations between models which produce the same
covariance structure (even between models which are not faithful).
We use this operator to prove the following theorem after rescaling
the network and perturbation parameters as in Equation (5): Λi =

ΛiR
− 1

2
i , Bi = BiR

− 1
2

i :

Theorem 2: If there exists an ordered set S = {s1, s2, . . . , sp}
of rows of the perturbation graph parameterized by B1 such that
L1 = B

(S)
1 P1, where L1 is a diagonal matrix of rank p and P1 is

a signed permutation matrix, then 1) if Λ1 parameterizes a DAG,
then for any parameterization Λ1 of any DAG, there does not exist
an alternative equivalent DAG or DCG , and 2) if Λ1 parameterizes
a DCG, then for any parameterization of any DCG, there exists a
finite set of equivalent DCGs, where each equivalent DCG contains
a reversed directed cycle with reference to the original DCG.

Proof: Given L1 exists, assume there exists an alternative equivalent
model parameterized by B2 and Λ2. Then, by Theorem 1, there
exists an orthogonal matrix A where Λ1A = Λ2, B1A = B2,
and L1A = L2. Because L1 and L2 are invertible, we have:
A = L−1

1 L2. This implies that L1LT
1 = L2LT

2 . Since L1 is
diagonal for any parameterization B1, L1LT

1 and L2LT
2 must

also be diagonal for all equivalent parameterizations L1,L2. If
@ a signed permutation matrix P2 such that F = L2P2, with
F diagonal, then there always exists a parameterization of L2

where L2LT
2 is not diagonal, and therefore not equivalent (since

all non-zero elements of L2 are free to vary). Therefore A = PT
2

is either an identity matrix or a signed permutation matrix.
Now consider Λ1A = Λ2. Because in this parameterization,
diag (Λ) = diag

“
R

1
2

”
, the only allowable equivalent model

transformations must have positive non-zero elements along the
entire diagonal. Therefore, if Λ parameterizes a DAG, then A = I,

and if Λ parameterizes a DCG, then A = P where P is any signed
permutation matrix which ensures non-zero positive elements along
the diagonal of Λ. This corresponds directly to reversing the order
of any set of directed cycles in the graph.

We now define the set of parents of a particular node, yi, from the
directed graph as pa(yi), and the set of all nodes in an undirected
graph Σ that have edges to node z as adj(Σ, z).

Theorem 3: If in Σ there exists an independent perturbation vertex
set x = (x1, . . . , xq) and a response vertex set y = (y1, . . . , yq)
where ∀i, |adj(Σyx, yi)| ≥ 1 and ∃xj ∈ pa(yi), then the only
equivalent directed cyclic graphs among y contain permutations of
cycles, and can be recovered from Σyx.

Proof: The existence of an independent perturbation vertex set
and response vertex set that satisfies these conditions corresponds
directly to a perturbation topology and parameterization specified
by L1. Given this observation, Theorem 2 ensures the constraint on
possible equivalent models. Finally, the reason the structure can be
recovered from Σyx is apparent from Equation (3) and (5), where
Σyx = ΛBT, and therefore ΣL1

yx = ΛLT
1 Since LT

1 is diagonal it
won’t change which elements of ΣL1

yx are zero or non-zero.

Lemma: If the underlying perturbation topology, B1, is known,
then the cardinality of all directed cyclic equivalence classes is
reduced to one.

Proof: This further reduction of the equivalence relationships is
apparent when one considers that each equivalent perturbation
topology specifies exactly one member of the equivalence class
(from Theorem 3). Therefore, if one knows the true perturbation
topology, then one knows the true regulatory model.

5 THE EXPLoRE ALGORITHM
Our algorithm EXPLoRE is constructed by making direct use of
the implications of Theorem 3. This theorem indicates that for
hypothetical studies of unrestricted sample size, we could develop
an algorithm that simultaneously incorporates all expression
phenotypes with putative cis-eQTL from a genome-wide gene
expression and genotype data set, and directly generate a regulatory
network for thousands of expression traits and genotypes. For
realistic sample sizes, we have developed EXPLoRE, which scales
efficiently to 30-50 phenotypes.

We begin with a screening process to identify a set of expression
traits with putative cis-eQTL (Step 1). We then make use of the
R package ‘glasso’ Friedman et al. (2008) in Step 2 to identify
genes with strong undirected conditional dependencies. For step 3,
we use the ‘cvx’ package (Grant et al., 2009) to solve the convex
optimization problem for the lasso penalized conditional Gaussian-
Graphical Model that includes both genotypes and phenotypes. This
package was used because additional constraints on the structure
of the full undirected graph Σ (described below) are incorporated
to ensure the assumptions required by Theorem 3 are enforced.
The advantage of this approach is it defines a convex optimization
procedure for shrinkage estimation, which will efficiently filter
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out conditional dependencies of weak or zero-effect. This leads to
higher power to detect true non-zero dependencies, when assuming
a sparse graph and small sample sizes (Friedman et al., 2008;
Kraemer et al., 2009). While we could make use of any undirected
inference approach that infers the conditional independence graph
(Kalisch and Buhlmann, 2007; Richardson, 1996; Neto et al., 2008;
Chu et al., 2009) for Steps 2 and 3 we use a lasso penalized
Gaussian-Graphical Model (GGM) (Friedman et al., 2008).

The entire EXPLoRE algorithm includes three steps:

Step 1: Selection of expression phenotypes: A standard genome-
wide association analysis is performed on each expression trait,
focusing on genetic polymorphisms in a cis-window around a gene
(e.g. a 2Mb window) (Stranger et al., 2007). Each marker is
tested individually using either a linear statistical model or non-
parametric test statistic (e.g. Spearman rank-correlation), with a
correction for multiple tests using either a control of false discovery
rate (Benjamini and Hochberg, 1995), a conservative Bonferroni
correction (i.e. α/n, where α is the significance level and n is the
number of tests), or through a permutation approach to compute
significance based on the empirical distribution of test statistics after
shuffling the data, as in Stranger et al. (Stranger et al., 2007).

Step 2: Expression interaction network reconstruction: Once
the set of expression phenotypes are identified, we estimate a
sparse interaction graph among phenotypes Θ = Σyy/xx. This
corresponds to learning the moralized graph among phenotypes
without conditioning on genotypes: Σyy/xx = ΛTQ−1Λ where
Q = 1

n
BTXTXB + R is a covariance matrix combining

the effects of shared genetic architecture between expression
phenotypes and error covariance among phenotypes (which is
assumed to be zero). Assuming that the eQTL effects are not
correlated (i.e. XTX is diagonal), then both Q and Q−1 will be
diagonal, and therefore the set of interactions observed in the moral
graph among phenotypes will be the same in Σyy and Σyy/xx.
Studies of genome-wide gene expression and genotypes tend to have
severely constrained sample sizes, such that even when selecting a
set of expression phenotypes in Step 1, the number of expression
phenotypes being considered will often greatly exceed the sample
size, or p >> n. Fortunately, a new class of estimators for precision
matrices have been proposed when p >> n, which use a penalty on
the precision matrix itself (Friedman et al., 2008; Kraemer et al.,
2009).

arg max
Θ≥0

: log {det (Θ)} − Tr (ΘSyy)− λ||Θ||1. (7)

The objective function defined in Equation (7) is a convex semi-
definite program which can be solved using interior point methods
(Vandenberghe et al., 1998; Friedman et al., 2008). We use ‘glasso’,
a package in R (Ihaka and Gentleman, 1996), which is based on the
cyclic descent algorithm proposed by (Friedman et al., 2008). The
hyperparameter λ is chosen based on five-fold cross validation.

Step 3: Regulatory network reconstruction: Once a subset
E = {e1, e2, . . . , ek} of k expression phenotypes with strong
interactions is identified based on the non-zero structure of
Θ = Σyy/xx, the final step in the EXPLoRE algorithm is to infer
a regulatory network among these expression traits. To do this we

Fig. 2. Network topologies used to simulate gene expression data. Nodes
represent expression levels of genes and the directed edges represent
regulatory (conditional) relationships among genes, where the strength of
the relationships were determined by sampling from N(0, 1), and the error
variance sampled from Γ−1(1, 2). Each phenotype (node) has a unique,
independent cis-eQTL feeding into into it (not shown), with effects sampled
from Γ(1, 2)

use the following constrained convex semi-definite program for the
full phenotype-genotype precision matrix (as in Equation (3)), with
the subset E of phenotypes and corresponding set S of cis-eQTL:
Σ ≡ ΣE,S:

arg max
Σ≥0,Σxx≡D

: log {det (Σyy)} − Tr (ΣS)− λ||Σyx||1, (8)

with D a diagonal matrix. Within EXPLoRE, we constrain B to be
diagonal, which forces the eQTL to be direct perturbations of single
expression traits to which the are cis-eQTL. This is the same as
writing Σxx as a diagonal matrix and ordering the phenotypes such
that they match the order of their respective cis-eQTL genotypes.
This constraint directly represents the assumption that all effects
of cis-eQTL must feed through a regulatory pathway (i.e. none of
these genetic markers have trans effects that are not explainable by
a regulatory pathway). As with the previous expression interaction
network, Θ, the tuning parameter λ is chosen based on five-
fold cross validation from Step 2. To solve this program we
us the convex optimization package ‘cvx’ (Grant et al., 2009),
implemented in MATLAB. The best-fitting (from cross-validation)
non-zero structure of Σyx represents the the regulatory network
structure that best explains the propagation of the effect of the
cis-eQTL through the network, as shown in Theorem 3.
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6 SIMULATION ANALYSES
To assess the performance of EXPLoRE for sample sizes typical of
genome-wide gene expression and genotype studies, we simulated
a set of 50 expression phenotypes with 50 edges for n =
60, 120, 300, 1000, for the four sparse regulatory networks shown
in Figure 2. We simulated weak to strong known unique cis-
eQTL sampled from Γ(1, 2), weak to strong regulatory effects
sampled from N(0, 1), and independent error variances sampled
from Γ−1(1, 2). Five replicate simulations were performed for each
simulated network topology.

When considering all non-zero parameters returned by our analyses,
since the lasso can shrink parameters to exactly zero (Tibshirani,
1996), the observed false-discovery rate was unacceptably high,
even for very harsh shrinkage (>60% for λ >> 0, results not
shown). This is not surprising given that the graphical lasso penalty
is not model selection consistent for arbitrary interaction network
topologies and parameterizations (Meinshausen and Buhlmann,
2006). Since Fisher’s z-transform of partial correlations (Kalisch
and Buhlmann, 2007) cannot be applied, because the shrinkage
estimation violates the assumptions required for this test statistic,
we incorporated a thresholding procedure on the empirical partial
correlations for both Θ and Σyx to control the false-discovery
rate. The empirical partial correlations computed for a generic
positive semi-definite precision matrix Π are defined as: Π �
lTl, l =

p
diag (Π), with � denoting the Hadamard product,

or element-wise matrix multiplication. By thresholding we were
able to control the false discovery rate to an arbitrary level, while
ensuring acceptable power to detect regulatory relationships.

We show Receiver Operator Characteristic (ROC) curves demonstrating
the performance of Steps 2 and 3 of EXPLoRE in Figure 3 for the
topology shown in Figure 2a, which was a typical result across all
topologies simulated. Figure 3a illustrates the reconstruction of the
interaction network (Equation (7)) as a function of the empirical
partial correlation threshold for multiple sample sizes (the shrinkage
parameter λ was determined by cross-validation and set to 0.20). In
Figure 3b, we show the ROC curves for the reconstruction of the
regulatory network for multiple sample sizes, again using the cross-
validated estimate of λ, where the set of phenotypes was determined
by the nodes in the interaction graph Θ that had significant edges
as estimated using ’glasso’ (Friedman et al., 2008) (Step 2 of
EXPLoRE).

As sample size grows, the performance of Step 3 increases
drastically. However, even with smaller sample sizes, the method
is still able to identify edges in the graph which have strong effects
for moderate sample sizes, while adequately controlling for false-
positives. This is shown in Figure 4, which presents the percentage
of true positives identified from the true regulatory network for
different corresponding absolute empirical partial correlations (from
Σyx), while controlling the false discovery rate for each simulation
to 5%. As illustrated in Table 1, the total power is fairly low for
n = 60 and n = 120, again when controlling the false discovery
rate to 5% or 10%, but as sample size increases, the total power
increases appreciably.

Table 1. Performance of EXPLoRE for simulated data,
controlling false discovery rate (FDR)

FDR=5% FDR=10%
sample size power ρe cutoff power ρe cutoff

n=60 0.084 0.648 0.112 0.608
n=120 0.172 0.675 0.328 0.486
n=300 0.504 0.344 0.516 0.325
n=1000 0.684 0.158 0.684 0.146

The empirical partial correlation ρe represents a scaled measure of the
strength of the regulatory effect and its associated cis-eQTL effects (see
text for details), with the cutoff used to control the FDR. Power represents
the total percentage of true edges found in the full graph (Figure 2a) after
Step 2 and Step 3 of EXPLoRE.

7 HAPMAP NETWORK ANALYSIS
To illustrate the usefulness of EXPLoRE, we analyzed genome-wide
gene expression levels measured in eternal lymphoblastoid cell lines
generated from the 270 individuals of Phase II of the International
HapMap project (Stranger et al., 2007). There are four distinct
populations in this sample, Caucasian with European origin (CEU),
Chinese from Beijing (CHB), unrelated Japanese from Tokyo (JPT),
and Yoruba individuals from Ibadan Nigeria (YRI) (Frazer et al.,
2007). We focus on a subset of 858 phenotypes for 210 unrelated
individuals, which Stranger et al. identified as having a cis-eQTL in
at least one population. These cis-eQTL were identified by limiting
the analysis to SNPs in a 2 Mb window around the transcription start
site of each gene to control for multiple testing.

Figure 5 and Table 2 show the best expression regulatory networks,
as determined by cross-validation, with λ = 0.7 and an empirical
cutoff of the partial correlation of 0.20, for a sub-network of 15
genes. These genes were physically distant (i.e. in low linkage
disequilibrium between cis-eQTL), had statistically significant cis-
eQTL of strong effect, and were identified as having robust
interactions from the initial screening using ’glasso’. We chose an
empirical cutoff for the partial correlation of 0.20 based on our
simulation results, which suggests that this is a reasonable choice
given the sample size. The simulation study may not represent the
exact conditions in the observed data (i.e. multiple populations with
different error covariance structures and regulatory relationships),
so this inferred network should be interpreted with caution.

Despite the preliminary nature of this analysis, the results are
interesting and suggestive. There is a high representation of genes
involved in cancer, cell-signaling, and apoptosis, as shown in Table
2. In particular, both RAB31 and RASSF6 are genes in the RAS
oncogene family of genes (Bos, 1989), and they have a directed edge
between them, though there is no previously demonstrated direct
interaction between these particular genes. In addition, there are
some major regulatory genes, including the RAS genes, PPARG,
TNFRSF18, IAN4L1, and PASK, which is encouraging, since the
goal of this analysis is to recover regulatory relationships among
genes.
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Fig. 3. Receiver Operator Characteristic (ROC) curves plotting the true
positive rate (y-axis) versus the false positive rate (x-axis) for different
sample sizes n for A) Step 2 of EXPLoRE inferring edges of the the
interaction graph and B) Step 3 of EXPLoRE, inferring directed edges
in the regulatory network reconstruction. These curves were generated by
applying EXPLoRE to gene expression and genotype data simulated using
the network models in Figure 2a.

8 DISCUSSION
EXPLoRE is a novel methodology for identifying signatures of
cyclic regulation from genome-wide gene expression and genotype
data. This is the first algorithm that makes use of sufficient sets
of cis-eQTL to infer unique directed cyclic networks from gene

Fig. 4. Proportion of correctly identified regulatory edges as a function of
absolute partial correlation ρe of the corresponding edge in Σyx identified
by EXPLoRE for data simulated using the regulatory networks in Figure 2a
while controlling FDR to 5%.

Fig. 5. A putative regulatory network operating in the immortalized cells
harvested from individuals in HapMap. This network was inferred by
applying EXPLoRE to gene expression data collected on these cell lines.
Additional details concerning gene function and strength of the network
relationships are presented in Table 2.
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Table 2. Biological functions and the strength of conditional relationships
among genes in the network extracted from HapMap gene expression (Figure
5).

gene symbol biological functions children(ρe)

BCAS1 candidate oncogene -
PASK intracellular signaling BCAS1(-0.266)

regulator
RAB31 vesicle and granule IAN4L1(-0.241)

targeting
RASSF6 growth inhibitor G0S2(-0.301),RAB31(-0.233)

and tumor suppressor
TNFRSF18 immunological self RASSF6 (0.53),

tolerance and apoptosis G0S2(-0.2634),ABHD6(0.293)
regulator

ABHD6 lipase and hyrdolase RASSF6(-0.204),
activity DNASE1L3(-0.252)

DNASE1L3 DNA hydrolase TNFRSF18(0.312),
and apoptosis G0S2(-0.305)

SNX7 intracellular trafficking TNFRSF18(0.336),
DNASE1L3(-0.323)

STEAP prostate cancer antigen PPARG(0.251),SNX7(-0.266)
FLJ10375(-0.346)

PPARG adipocyte differentiation SNX7(-0.252),G0S2(-0.226)
regulator,tumorigenesis,
metabolism

FLJ10375 ion transport G0S2(0.368),
SLC12A7(-0.204)

SLC12A7 ion transport -
cell volume homeostasis

G0S2 cell cycle switch TNFRSF18(0.374),
apoptosis IAN4L1(0.583),

RASSF6(-0.223)
IAN4L1 apoptosis, STEAP(0.281)

T-cell differentiation
BLK protein kinase cascade SLC12A7(0.332)

Gene symbols and biological functions accessed from http://www.ncbi.nlm.nih.gov/gene.
The children are genes which are directly regulated based on the directed graph (Figure 5).
The strength of the conditional relationship is the empirical partial correlation (ρe), a scaled
measure of the strength of regulation and the strength of the cis-eQTL effect (see text for
details).

expression data. EXPLoRE also provides an efficient strategy for
network inference by learning the interaction network structure
through the lasso procedure, which can then be transformed into
a unique directed cyclic regulatory network. Since the underlying
optimization program is convex, EXPLoRE provides significant
efficiency advantages over many previously proposed algorithms
for genome-wide cyclic regulatory network reconstruction (Liu
et al., 2008; Neto et al., 2008). These previous approaches require
either heuristic searches through regulatory network space with
no guarantee to reach networks with the strongest evidence given
the data, or lack sufficient perturbations to allow unambiguous
regulatory inference.

A number of assumptions concerning biological networks are made
when applying EXPLoRE. These include assumptions that are
common to most graphical modeling techniques, such as sparsity,
linearity of regulatory relationships, and normally distributed error,

as well as an assumption that is specific to EXPLoRE: the presence
of known, independent perturbations from cis-eQTL. The common
assumptions are reasonable when constructing a first approximation
to regulatory network structure. Regulatory relationships are not
linear, but linearity is the simplest approximation that provides
biologically relevant information, i.e. there is a detectable
relationship between two genes, or no relationship. Given an
observed covariance structure, normal distributions have maximum
entropy (Wainwright and Jordan, 2008). A normal assumption
is therefore conservative in terms of being the most ‘random’
distribution that could have generated the data. Given the absence
of knowledge about the specific biological process generating
the distribution of expression measurement error, and barring
any clear evidence of non-normality in data, such a conservative
approximation seems appropriate.

The assumption of independent, detectable cis-eQTL effects is
perhaps the most restrictive assumption of EXPLoRE. We do not
expect this to be a good approximation for all regulatory modeling
situations. However, in the case of gene expression, a number of
studies have found that eQTL with the largest (detectable) effects
on expression, tend to be local to the gene they are affecting,
i.e. cis (Brem and Kruglyak, 2005; Doss et al., 2005). What’s
more, due to the structure of linkage disequilibrium in populations
(the correlation structure among genotypes) it is often possible to
identify a large set of cis-eQTL that are uncorrelated that each have
unique expression phenotypes. For example, a set of eQTL that
are present on different chromosomes or are far away from one
another in terms of genetic map distance (Stranger et al., 2007). The
organization of eQTL may not therefore be badly approximated by
a model of independent, local perturbation and, given the resolution
advantages when these assumptions are met, an EXPLoRE analysis
can be of value. We do note that, as with any graphical model
analysis where the true nature of the regulatory network is unknown,
the inferences extracted by EXPLoRE should be interpreted with
caution.

As a final comment, the theory of sufficient perturbations that
maximize regulatory resolution, which is used as the foundation of
EXPLoRE, is actually far more general. Theorem 3 defines a class
of perturbation architectures where there is a direct isomorphism
between two very different types of graphs: the undirected graph
with perturbations and a directed cyclic graph representing a
regulatory network. The theory does not require perturbations to be
cis, just that there be an appropriate set of perturbations that provide
resolution. More complex perturbation sets, which include sufficient
perturbations as a subset, can also provide maximum resolution.
One could therefore construct algorithms similar to EXPLoRE
without the cis-restriction. Moreover, the specific topology of
eQTL effects need not be known, if one is willing to accept
the cost of larger network equivalence classes and therefore less
total regulatory resolution. With this restriction lifted, it would
be possible to jointly infer the genetic perturbation architecture
simultaneously with regulatory architecture, although such a joint
reconstruction would require much larger sample sizes. We are
currently working on these extensions for the EXPLoRE algorithm.
In addition, we are working on a version of the EXPLoRE algorithm
which uses the cyclic descent method of Friedman et al. (Friedman
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et al., 2008; Kraemer et al., 2009) to improve the scaling property
of Step 3.

9 CONCLUSION
We have presented theory concerning the sufficient set of
perturbations necessary to limit equivalence classes of directed
cyclic graphs (DCG) to a unique network. This theory, in
combination with existing penalized likelihood approaches for
extracting sparse undirected graphs, is a strategy for unambiguously
inferring regulatory relationships from gene expression and
genotype data. We implement this strategy in the algorithm
EXPLoRE. This is the first algorithm for directed network inference
that does not rely on exhaustive scoring techniques, when leveraging
sufficient perturbations to uniquely identify cyclic regulation. Our
simulation and data analyses indicate that EXPLoRE performs well
for realistic sample sizes and has the potential to extract regulatory
networks responsible for observed patterns of gene expression.
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