PCC	$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{\sigma_x} \right) \left(\frac{y_i - \overline{y}}{\sigma_y} \right)$
Uncentered Correlation Coefficient	(same as PCC, except that sample means are set to 0)
Frequency Dot Product (FDP) (note: we've been calling this idf_unnorm)	$FDP = \sum_{i=1}^{n} \left[(x_i)(y_i) \left(\log_2 \frac{D}{count_i} \right)^2 \right]$ • x_i and y_i are the i th phenotypes in the binary phenotype vectors \vec{x} and \vec{y} . • n = total number of phenotypes • D = total number of binary phenotype vectors • $count_i$ = count of number of times the phenotype i appears in the data
Inverse Document Frequency (IDF)	 IDF = FDP x * y IDF is the FDP normalized by the lengths of the two vectors.
Euclidean Distance	$d = \sum_{i=1}^{n} (x_i - y_i)^2$
Jaccard Similarity Coefficient	$J = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}$ • $M_{11} = \#$ of times 1 is observed in both vectors • $M_{01} + M_{10} = \#$ of times 1 is observed in exactly one of the vectors in the pair.
Mutual Information	$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$
Residual IDF (RIDF)	 <i>RIDF</i> = <i>IDF</i> - log₂ 1/(1-Poisson(0; λ_i)) RIDF is the difference between the actual IDF and the inverse document frequency predicted by a Poisson distribution. λ_i is the Poisson parameter, the average number of occurrences of the phenotype in each phenotype vector.

Table of measures tested and their mathematical formulas.