PCC	$r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)$
Uncentered Correlation Coefficient	(same as PCC, except that sample means are set to 0)
Frequency Dot Product (FDP) (note: we've been calling this idf_unnorm)	$F D P=\sum_{i=1}^{n}\left[\left(x_{i}\right)\left(y_{i}\right)\left(\log _{2} \frac{D}{\text { count }_{i}}\right)^{2}\right]$ - $\quad x_{i}$ and y_{i} are the $\mathrm{i}^{\text {th }}$ phenotypes in the binary phenotype vectors \vec{x} and \vec{y}. - $n=$ total number of phenotypes - $D=$ total number of binary phenotype vectors - count $_{i}=$ count of number of times the phenotype i appears in the data
Inverse Document Frequency (IDF)	$I D F=\frac{F D P}{\|\vec{x}\| *\|\vec{y}\|}$ - IDF is the FDP normalized by the lengths of the two vectors.
Euclidean Distance	$d=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}$
Jaccard Similarity Coefficient	$J=\frac{M_{11}}{M_{01}+M_{10}+M_{11}}$ - $\quad M_{11}=\#$ of times 1 is observed in both vectors - $\quad M_{01}+M_{10}=\#$ of times 1 is observed in exactly one of the vectors in the pair.
Mutual Information	$I(X ; Y)=\sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right)$
Residual IDF (RIDF)	$R I D F=I D F-\log _{2} \frac{1}{1-\operatorname{Poisson}\left(0 ; \lambda_{i}\right)}$ - RIDF is the difference between the actual IDF and the inverse document frequency predicted by a Poisson distribution. - $\quad \lambda_{i}$ is the Poisson parameter, the average number of occurrences of the phenotype in each phenotype vector.

Table of measures tested and their mathematical formulas.

