
The goals of systems biology are orthogonal to large-
scale efforts to catalogue genomes, proteomes and 
interactomes. Rather than seeking a broad knowledge of 
biological components and their functions, systems biol-
ogy seeks a deep understanding of biological processes 
in quantitative terms (FIG. 1). Therefore, ‘omics’ and sys-
tems biology complement each other, but data collection 
strategies in each field are entirely different. Biological 
pro cesses are not static or homogeneous in space. 
Systems biology therefore requires dynamic, spatially 
resolved data on gene and protein function in specific 
cell types in response to specific stimuli. The complexity 
of this type of ‘rich’ data is extremely large and it cannot 
simply be collected by steady, hypothesis-independent 
accumu lation (as was possible in sequencing the human 
genome). Instead, data must be collected with reference 
to specific, quantitative models.

This article is a guide to collecting and organizing 
systematic sets of rich, multivariate data that characterize 
how signals in regulatory pathways change in time and 
in space. For simplicity, we limit our discussion to bio-
chemical changes (particularly protein phosphorylation) 
found in eukaryotes. For the detection and characteriza-
tion of nucleic acids and metabolites, readers are referred 
to other reviews1–8.

Rarely can a model be constructed solely from data 
that are reported in the literature. Here, we assume that 
readers are interested in making their own measure-
ments and assembling new data sets. We review recent 
developments in three measurement technologies that 
are important for systematic data collection: affinity-
based assays, physical assays and enzymatic assays. We 
also discuss approaches to quantifying signals in single 
cells and the necessity of combining population-based 
and single-cell data. Last, we explore methods to trans-
form raw data into reliable measurements, organize 

and check the quality of data during and after data 
collection, and fuse heterogeneous measurements into 
a compendium.

Considerations in biological measurement
Although we always strive to collect more comprehensive 
data, five practical considerations dominate the design of 
actual data-collection efforts.

First, matching data and a model is rarely simple. 
It is usually said that sensitivity analysis can be used to 
prioritize parameters in a mechanistic model for meas-
urement (see the accompanying Review by Aldridge, 
Burke, Lauffenburger and Sorger in Nature Cell Biology), 
but many of the most sensitive parameters cannot be 
measured using existing reagents and technology. When 
modelling, we must be conscious of what can and can-
not be measured, and with what degree of precision. 
Modelling yields a wealth of hypotheses, but only a sub-
set of these — and not necessarily the most interesting 
— might be testable. Because measurement is the most 
limiting aspect of a systems analysis, approaches to 
modelling are usually designed to accommodate possible 
measurements, and not the other way around.

Second, practical trade-offs must be considered 
when selecting what to measure and how frequently to 
measure it (see Supplementary information S1 (box)). 
Reagents are expensive, validation is time-consuming 
and experiments can only be repeated a limited number 
of times. We must choose between performing rep-
licates of a single experiment, sampling more densely 
in time, exploring multiple perturbations, or looking at 
more proteins. Even a twofold increase in the number 
of measurements is significant when hundreds of tissue-
culture plates are involved. One effective strategy is to 
do a preliminary experiment in which multiple axes 
in data space (for example, signals, perturbations and 
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Systematic set
A data set in which all data 
are collected from the same 
experimental system in such 
a way that all data can be 
directly compared, regardless 
of when measurements were 
made.

Signal
Any type of biomolecule that 
transfers information in a 
signalling network.
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Abstract | Systems biology, particularly of mammalian cells, is data starved. However, 
technologies are now in place to obtain rich data, in a form suitable for model construction 
and validation, that describes the activities, states and locations of cell-signalling molecules. 
The key is to use several measurement technologies simultaneously and, recognizing each of 
their limits, to assemble a self-consistent compendium of systematic data.
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Perturbation
Any experimental condition 
that is applied to a cell that 
causes a shift in the cell’s 
behaviour away from the basal 
state. This includes 
extracellular stimulation by 
physiological ligands, inhibition 
of protein activities by small 
molecule inhibitors, or 
alterations in protein-
expression levels by RNA 
interference or overexpression.

Immunoblot
Also known as a western blot. 
Following gel-based separation 
by mass, charge or both, 
proteins are transferred to a 
membrane and probed with 
target-specific antibodies.

Enzyme-linked-
immunosorbent assay
(ELISA). ELISAs involve 
adsorbing or coupling capture 
antibodies to a 96-well plate. 
Following protein capture, a 
target protein is detected, 
either directly (if it was labelled 
in the sample) or indirectly, 
through a labelled detection 
antibody.

time points) are explored sparsely so as to estimate 
their information content (either by inspection or by 
formal analysis (see below)) and the overall perform-
ances of the measurement techniques are determined. 
Subsequent experiments can then focus mainly on the 
axes with the highest information content, with more 
limited sampling of other axes to ensure that nothing 
important is missed.

Third, protein-based data compendia are inevitably 
composed of heterogeneous measurements that require 
fusion. Whereas a single methodology, such as oligo-
based microarrays, is, in principle, sufficient to measure 
every mRNA species in a cell, no single method can 
measure the full diversity of protein signals. Technical 
trade-offs exist among measurement approaches, 
including: breadth versus depth, low versus high 
throughput, small versus large sample size, ease versus 
difficulty, fixed versus live cell and, last, single-cell 
versus pop ulation measures (FIG. 2; Supplementary infor-
mation S2 (table)). The heterogeneity of protein assays 
demands an efficient approach to data fusion. Results 
that arise from several different measurement technolo-
gies must be combined, and data that have been acquired 
over time must be merged into self-consistent sets for 
which one cannot simply rely on direct comparison 
to contemporaneous controls.

Fourth, the collection of signalling measurements 
must be hypothesis driven. The idea that complex, 
context-sensitive, biological measurements can steadily 
be accumulated without regard for their eventual use is 
wrong in principle and in practice. The scope of a set 
of measurements must match the hypotheses being 
tested. For example, a statistical model that is aimed 
at uncovering new relationships among disparate sig-
nalling modules requires sparse but broad sampling, 
whereas a physicochemical model requires denser and 
narrower sampling. The process of measurement is itself 
often dependent on specific hypotheses. For example, 
we might be able to measure the levels of phosphoryla-
tion on a critical kinase, but not the biochemical activity 
of the kinase; activity could then be inferred, but only in 
the context of a specific hypothesis about the mechanism 
of regulation.

Fifth, population-based and single-cell measurements 
are highly complementary. Most mathematical models of 
pathways are representations of reactions that take place 
in a single cell (see below). Single-cell methods provide 
important information on the mean and variance of cell 
responses, but allow for far fewer signals to be measured. 
The most effective strategy is to combine single-cell and 
population-based measurements using quantitative data 
models.

Affinity-based assays in systems biology
Affinity-based methods, most commonly using antibod-
ies, are a mainstay of protein measurement. Immunoblots 
are the standard method for determining protein abun-
dance and state of modification9,10, but they are low 
throughput and difficult to automate (FIG. 2). Several 
other affinity-based assays have been commercialized, 
however, each has its advantages and disadvantages. 
Affinity-based assays are typically capable of measur-
ing low-abundance proteins in small samples (typically 
~104 cells) with high throughput (hundreds of samples 
per day). Antibodies and other affinity reagents are 
used in either of three formats: affinity-based capture, 
direct affinity-based detection and sandwich detection 
(BOX 1). The first two methods require a single antibody, 
whereas sandwich methods require separate capture and 
detection antibodies. Regardless of format, chemilumi-
nescence, fluorescence or colorimetric methods can be 
used as readouts.

Classic enzyme-linked-immunosorbent assay (ELISA) 
techniques rely on the adsorption of antigens or anti-
bodies to solid phase substrates, followed by enzyme-
based detection. However, sandwich methods that use 
fluorescent detection in 96-well or 384-well plates (for 
which ELISA is really a false moniker) are the primary 
means for quantifying signalling proteins and their 
modifications in microplate format. Sandwich assays for 
many proteins are now available, and typically have good 
selectivity and sensitivity (BOX 1). Sample sizes are small 
and throughput is good, but the degree of multiplexing 
is low. Detection of very low-abundance proteins can be 
enhanced by complex detection schemes such as roll-
ing circle amplification11 and specialized plate materials 
(such as electroluminescent detection12).

Figure 1 | The scope of systems biology. The approaches 
of molecular biology, proteomics and systems biology are 
compared with respect to three factors: scale (ranging from 
a single protein to the whole proteome); level of detail 
(ranging from descriptive to mechanistic); and context 
(ranging from a prototypical cell to a specific cell type). 
Molecular biology studies have traditionally focused on 
one or a few proteins with a highly mechanistic level of 
detail, often in specific cellular contexts. By contrast, 
proteomics seeks to catalogue many proteins, with the 
eventual goal of covering the entire proteome. So far, 
proteomic studies have largely been descriptions of the 
prototypical cell, but they are now moving towards more 
specific cellular contexts. Systems biology seeks a 
mechanistic understanding of phenomena that involve 
many proteins, but not the entire proteome; these 
phenomena are often specific to a cellular context. As time 
progresses, systems biology studies will encompass larger 
numbers of proteins with greater mechanistic detail in 
increasingly specific cellular contexts.
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Flow cytometry
A method in which 
fluorescence-intensity data are 
recorded from particles in 
solution as they flow past a 
detector.

Protein profiling
A method that assesses the 
expression level of a large set 
of proteins in a specific tissue 
or cell type. It is analogous to 
transcriptional profiling by 
DNA microarrays.

Protein-interaction 
microarray
A protein microarray that is 
used to assay protein 
interactions. In such arrays, the 
capture reagents are purified 
proteins or protein domains, 
and the analyte solution 
contains a potential binding 
partner. Detection strategies 
are the same as in antibody 
microarrays (direct labelling or 
sandwich).

Substrate-protein 
microarray
A protein microarray that is 
used to identify substrates of 
enzymes, such as kinases. In 
this format, the array consists 
of potential substrates, and the 
analyte contains a purified 
enzyme. Modification of the 
substrates on the array (for 
example, phosphorylation) by 
the analyte is detected by 
radiolabel incorporation or 
other labelling strategies.

Microfluidic device
A device for fluid handling in 
which the smallest dimensions 
of the features (channels, 
valves and so on) are on the 
scale of a few to a few hundred 
micrometers.

Stable-isotope labelling with 
amino acids in culture
(SILAC). This method labels 
proteins from different samples 
with heavy atoms, yielding 
mass differences of several 
Daltons between the same 
peptide from different samples.

Building on the ELISA’s sandwich format are bead-
based arrays, in which capture antibodies are bound 
to beads rather than immobilized on plates and flow 
cytometry is used to detect antigen binding. Up to 100 
differently coloured types of bead can be mixed together 
and later distinguished by their unique fluorescence 
signatures, although antibody cross-reactivity typically 
limits the number of antigens that can be multiplexed 
to between 10 to 20 (reviewed in REF. 13). Bead-based 
assays for proteins and their modifications show 
considerable promise for systems biology.

A variant on conventional immunoassays is the 
‘in-cell western’, a low-resolution form of immunofluo-
rescence microscopy in which cells are grown and fixed 
in 96-well plates and then probed with target-specific 
antibodies. The method is rapid and allows many condi-
tions to be assayed14, but, as in reverse-phase antibody 
arrays (see below), accuracy demands highly specific 
antibodies.

Microarray technology. Microarrays — in which printers 
are used to spot and immobilize cell extracts, antibodies 
or recombinant proteins on glass slides — are basically 
miniaturized assays based on the three basic immuno-
affinity formats (BOX 1) combined with arrays to enable 
simultaneous and repeated analysis15. Early suggestions 
that a complete proteome could be profiled on a chip 
have not proven to be realistic. However, many useful 
protein chips have been developed, typically with 10–100 
features16. Microarrays based on a sandwich format are 
best suited to protein profiling16, particularly in the case 
of cytokines17,18. For example, an array of anti-cytokine 
antibodies has been used to determine, in a single experi-
ment, the abundance of 51 cytokines in the supernatants 
of cultured dendritic cells67.

Profiling sets of binary interactions among mem-
bers of multiprotein families relies on protein-interaction 
microarrays. The equilibrium binding affinities of virtu-
ally every Src-homology-2 (SH2) and phosphotyrosine-
binding (PTB) domain encoded by the human genome 
for 31 sites of tyrosine phosphorylation on the 4 human 
ERBB receptors were recently determined using 
arrays19. The resulting interaction network revealed 

an unexpected systems-level property: ERBB recep-
tors differ in the extent to which SH2 binding becomes 
more promiscuous upon overexpression, a property 
that correlates with the oncogenic potential of various 
receptors19.

Last, substrate-protein microarrays make it possible to 
study transient interactions between protein-modifying 
enzymes and their substrates on a large scale. In a recent 
example, microarrays comprising ~4,400 yeast proteins 
uncovered in vitro substrates for 87 protein kinases20. 
Collecting enzyme-substrate data in an unbiased 
and systematic fashion and integrating the data with 
protein–protein interaction and transcription-factor-
binding data made it possible to derive features of yeast 
physiology that had eluded conventional analysis.

Advances in affinity-based assays. The mainstay of 
affinity-based methods are antibodies, although other 
types of biomolecule show long-term promise21,22. Most 
antibodies are developed and produced in animals23, 
although recent improvements in recombinant antibody 
cloning, display and production techniques have made it 
easier to generate complex collections of antigen-binding 
sites in vitro and thereby generate high-affinity synthetic 
antibodies24. Microfluidic devices will also improve affinity-
based assays by decreasing the volumes of sample and 
reagent that are required and by increasing throughput 
and accuracy 68.

Physical methods for protein measurement
Mass spectrometry is a physical method for protein 
measurement that can, in contrast to affinity-based 
techniques, potentially detect and measure any soluble 
apopeptide or modified peptide25. An important feature 
of mass spectrometry is its capability to identify peptides; 
however, technologies for peptide quantification — which 
is important for modelling — have only recently been 
developed.

The key to relative peptide quantification by mass 
spectrometry is differential tagging with a mass label. 
Stable-isotope labelling in vivo relies on metabolic 
in corporation (for example, using stable-isotope label-
ling with amino acids in culture (SILAC)26), and in vitro 

Figure 2 | Merits of different assay technologies. A comparison of the experimental techniques discussed in this 
review with respect to several important considerations. Orange bars indicate the strength of the assay with regard to 
each criterion, with longer bars being more favourable. For more details, see Supplementary information S2 (table). 
ELISA, enzyme-linked-immunosorbent assay.
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Isobaric tags for relative 
and absolute quantification
(iTRAQ). iTRAQ labels are 
initially isobaric, ensuring that 
the same peptides from 
different samples behave 
identically in the full mass 
spectrum (MS) mode, but they 
fragment to generate marker 
ions that differ by a single 
Dalton in tandem MS mode 
during peptide identification.

Marker ion
An ion that carries the isotope 
label in the breakdown of a 
peptide during tandem mass 
spectrometry analysis.

involves protein or peptide derivitization (for example, 
using isobaric tags for relative and absolute quantification 
(iTRAQ)27). In both SILAC and iTRAQ methods, con-
trol and experimental samples with different mass labels 
are mixed prior to analysis on a mass spectrometer. By 
comparing the relative amounts of each marker ion on 
a peptide, relative changes in the peptide levels can be 
determined for large numbers of peptides. SILAC per-
mits multiplex analysis of three samples, and iTRAQ 
of four, and 8-plex iTRAQ is currently under develop-
ment. Multiplexing can be used to compare different 
time points in a time course or different cell popula-
tions at a single time point. For example, 4-plex iTRAQ 
has been used to characterize changes in the levels of 
phosphotyrosine at more than 100 sites at 4 time points 
following the stimulation of human mammary epithelial 
cells with epidermal growth factor (EGF)28. Clustering 
the resulting data yielded preliminary functional assign-
ments for many proteins not previously known to be 
EGF targets.

One of the great strengths of mass spectrometry is its 
capability to distinguish among closely related protein 
species. Mass spectrometry offers exquisite specificity 
because it can identify proteins using both mass and 

peptide-fragmentation patterns (as well as chromato-
graphic retention time for liquid chromatography–
tandem mass spectrometry)25. This makes it possible 
to distinguish among very similar isoforms of a single 
protein (for example, isoform-1 and -2 of STAT3 (signal 
transducer and activator of transcription-3))28, or to 
distinguish among phosphorylation states of the same 
protein (such as the singly and doubly phosphorylated 
mitogen-activated-protein kinases extracellular signal-
regulated kinase-1 (ERK1) and ERK2 (REF. 28)).

A challenge that is faced by all physical approaches 
to protein analysis, including mass spectrometry, is that 
most biological samples are very complex — they consist 
of thousands of different proteins, each of which exists 
in multiple modified forms. Analysis therefore requires 
either great power of separation in the instrument itself, 
or prior fractionation of the sample to reduce complexity. 
Various affinity-based fractionation and enrichment 
methods have been developed (see Supplementary 
information S3 (box); reviewed in REF. 29), making 
it possible to detect hundreds or thousands of low-
abundance phosphopeptides in a single sample with-
out interference from abundant non-phosphorylated 
proteins30–32.

Box 1 | Affinity-based approaches

Three strategies exist to measure the abundance and state 
of modification of proteins. Affinity-based capture uses 
protein-capture reagents (typically antibodies) that are 
coupled to a solid matrix to pull target proteins out of 
solution15 (panel a). The captured proteins are visualized by 
labelling them with a fluorophore15,61 or another small 
molecule (such as biotin)62 before capture. Although this 
method is straightforward and easily scaled to analyse 
many target proteins, it is often difficult to find highly 
selective capture reagents. As such, antigen-capture 
assays are valuable for initial characterization, but they are 
not always appropriate for obtaining accurate, 
quantitative data. Quantification is affected by cross-
reactivity of the capture reagents with non-target proteins.

A more accurate, but less scalable, strategy is to use a 
sandwich immunoassay63,64 (panel b). Following protein 
capture, a cocktail of detection antibodies is used to 
detect and quantify the captured proteins. Each protein 
must now be recognized by two distinct antibodies, 
a capture antibody and a detection antibody, and 
therefore interference from antibody cross-reactivity is 
minimized. Identifying appropriate antibody pairs is 
difficult and time-consuming. However, as antibody pairs 
become available for more proteins, microarrays of 
sandwich assays will prove invaluable for obtaining 
accurate, quantitative data on tens to hundreds of proteins.

Last, in affinity-based detection or ‘reverse-phase’ 
assay65,66 (panel c), the samples (for example, cellular 
lysates) are spotted directly onto a protein-binding 
membrane (typically glass-supported nitrocellulose for 
microarrays). The immobilized proteins are subsequently 
detected by probing with different antibodies. This assay 
also suffers from inaccuracies that are introduced by 
antibody cross-reactivity, but powerful signal-
amplification methods can be used to detect and quantify 
even low-abundance proteins.
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Chemosensor
In the context of kinase assays, 
a chemosensor is a substrate 
peptide that contains the non-
natural amino acid Sox, which 
displays chelation-enhanced 
fluorescence when the peptide 
is phosphorylated.

Activity-based protein 
profiling 
(ABPP). A method that uses 
reactive probes carrying a label 
that will covalently bind 
specifically to active enzymes 
of a certain class. The label is 
often a fluorophore, enabling 
visualization and quantification 
of coupled enzymes on gels, 
antibody microarrays or in 
cells. Recently, reactive probes 
have been labelled with an 
affinity tag for capture of the 
coupled enzymes, 
quantification and 
identification by mass 
spectrometry.

Image cytometry
A method that uses 
microscope optics to collect 
low-resolution data from cells 
that are adhered to a slide.

Bayesian network inference
A statistical method for 
inferring the probable 
relationships between 
measured variables.

Despite its advantages, mass spectrometry in its 
current form has several weaknesses. First, throughput 
is low (FIG. 2). Second, only three to four samples can 
be compared at a time, and each run typically requires 
several weeks to analyse. Here, the biggest limitation is 
not the instrumentation, but rather inadequate software 
and the need to confirm peptide assignments by hand. 
Last, samples for protein profiling must be about 200 μg 
of protein (typically 105–107 mammalian cells, depend-
ing on their size). Nonetheless, the capability of mass 
spectrometry to provide data on hundreds or thousands 
of peptides makes it the pre-eminent technology for the 
analysis of protein modifications when many signals are 
to be assayed in a few large samples.

Enzymatic activity assays
Activity-based assays are as diverse as the protein functions 
they measure. Many enzyme activities can now be assayed 
with reasonable throughput and multiplex measurement. 
As a first example, G proteins can be assayed in a 96-well 
format using sandwich detection. A recombinant frag-
ment of an effector molecule (a protein regulated by the 
GTPase) is used as an affinity capture reagent. Sandwich 
assays are an indirect measure of GTPase activity and rely 
on the assumption that only GTP-bound (active) GTPase 
binds to the effector. G-protein activity assays have been 
used, for example, to characterize and model the roles of 
Ras and Rap1 on ERK kinase activation10.

Second, radioactive immunocomplex kinase assays are 
an excellent method to monitor the activities of protein 
kinases in high throughput, and they provide a comple-
mentary and more direct view of activity than quantifying 
activating phosphomodifications. Capture antibodies that 
do not interfere with catalytic activity and efficient peptide 
substrates have been identified for several kinases in mam-
malian cell signalling33, and the value of high-throughput 
in vitro kinase-activity assays has been shown in an analy-
sis of cellular responses to insulin, tumour necrosis factor 
and EGF9,34. Highly sensitive and selective fluorescence-
based chemosensors35,36 have the potential to replace radio-
chemical approaches for at least some protein kinases37. 
A third example of an activity assay measures proteases, 
including the caspases that mediate cell death. Proteases 
can be assayed in a plate-based format using fluorogenic 
peptide substrates. As in the case of kinase assays, several 
companies provide immunocomplex protease assays with 
good molecular specificity.

The assays described above are quantitative, sensitive 
and can be done in parallel in a 96-well format, but they 
are not multiplex. By contrast, activity-based protein profiling 
(ABPP) allows for the quantification of many enzymes 
using probes that specifically label proteins with shared 
catalytic features in single samples (reviewed in REF. 38). 
In an elegant study, ABPP and the quantification of cou-
pled enzymes by mass spectrometry were used to classify 
22 enzymes in 7 groups based on their distinct activity 
profiles in mouse xenograft models of breast cancer39. 
This study showed that, following implantation in nude 
mice, human breast cancer cells have dramatically 
elevated serine protease activities that might contribute 
to enhanced metastatic potential.

Systems biology at the single-cell level
Cytometry and imaging techniques quantify fluorescent 
signals at cellular or subcellular resolution and they are 
the primary means for monitoring single cells. In flow 
cytometry, subcellular resolution is not possible, but up to 
17 fluorophores, potentially representing 17 different anti-
bodies, can be quantified at the same time40. Fluorescent 
data on single cells can also be collected with moderate 
subcellular resolution using image cytometry41. Last, 
high-resolution fluorescence imaging provides data with 
detailed subcellular resolution from both live and fixed 
cells. Both cytometry and imaging technologies are amen-
able to high-throughput analysis of cells grown in 96-well 
or 384-well plates, making it possible to measure hundreds 
to thousands of samples per day. However, significant 
challenges in data analysis remain to be solved before 
the full potential of high-throughput high-resolution 
imaging can be realized (see accompanying Review by 
Swedlow and Goldberg in Nature Cell Biology).

Cytometry and imaging techniques show that 
signal-transduction events and cellular responses are 
heterogeneous among cells; however, this heterogeneity 
is obscured in population-based assays (for example, 
immunoblotting of cell extracts)42–44. Many mathematical 
models of signalling pathways are representations of 
reactions taking place in a single cell44–46, making single 
cells the ideal source of data for modelling. However, it 
is impractical to insist that all data should be collected 
using single-cell methods. Sensitivity of detection is one 
limiting factor (because many proteins of interest are 
present at low copy number), as are low throughput and 
the limited possibilities for multiplexing. Simultaneous 
measurement of multiple signals is limited by the fact that 
single-cell techniques usually rely on fluorescence, mak-
ing detection of ~10 simultaneous signals the practical 
upper limit for fixed cells (perhaps 20 signals can be 
measured using the most advanced instruments) and 
2–3 signals for live cells. Specificity is also an impor-
tant challenge because in vitro characterization cannot 
always predict the behaviour of fluorescent probes in the 
complex intracellular environment.

The most productive approach in practice is to 
combine population-based and single-cell measure-
ments. Even a small amount of single-cell data can be 
informative for the interpretation of a data set that was 
collected using population-based assays. In the simplest 
case, such as a graded transcriptional response, signals 
from individual cells are normally distributed around a 
mean value so that knowledge of the mean and variance 
of each signal is sufficient to link single-cell and popula-
tion measurements47. In other cases, such as all-or-none 
enzyme activation48, signal distributions can be bimodal 
and population-average measurements are then poor 
indicators of single-cell behaviour.

Quantification of signals in fixed cells. Although flow 
cytometry has long been used to assay surface recep-
tors and marker proteins, cytometry is now equally 
useful for quantifying intracellular signals49. For exam-
ple, multicolour flow cytometry and Bayesian network 
inference50 have been used to assemble a model of the 
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Data validation
The process of verifying assay 
accuracy.

Data normalization
The adjustment of measured 
values to account for possible 
run-to-run and day-to-day 
variability in the assays.

Fluorescence speckle 
microscopy
Speckles that form by the 
random association of 
fluorophores with 
macromolecular structures are 
tracked by live-cell imaging. 
The information in the dynamic 
behaviour of these speckles is 
converted into a quantitative 
spatio-temporal readout of 
cytoskeleton-polymer 
transport and turnover.

interactions among 11 signalling proteins in human 
cells. Multicolour cytometry has also been used for 
comparative phosphoprofiling of stimulated blast cells 
from healthy and leukaemia-afflicted individuals51. 
Immunostaining techniques are also a mainstay of 
microscopy, which provides the advantage that protein 
localization can be quantified. For example, high-
throughput microscopy has been used to characterize 
the response of cancer cells to small molecules52 and 
to examine the differentiation of primary neural stem 
cells in defined microenvironments53. These studies 
show the capability of fixed-cell immunofluorescence 
cytometry and microscopy to collect rich quantitative 
data sets from small numbers (102–104) of cells. Taking 
full advantage of this feature, several of these studies 
systematically probed signalling in primary human cells 
that had been exposed to various stimuli, rather than 
simply assaying the basal state of these rare and hard-
to-obtain cells50,51,53.

Protein expression and signalling dynamics in living cells. 
Another useful application of microscopy and cytometry 
is the quantification of proteins in living cells by use of 
genetically encoded fluorescent proteins (FPs). One 
outstanding study combined FP-tagged endogenous 
genes with calibration by quantitative immunoblotting 
to determine the absolute expression levels of 28 proteins 
that are involved in cytokinesis54. This study showed that 
flow cytometry and microscopy can provide similarly 
accurate measurements of protein concentration, 
although microscopy had lower variance and allowed 
for the measurement of subcellular protein concentra-
tions. The inherent cell-to-cell variability in gene expres-
sion has also been examined using flow cytometry55,56. 
Together, these studies show that FPs can be used to 
determine the levels and variability in protein abun-
dance, data that are critical for physicochemical models 
of biological networks.

FPs can also be used to observe the dynamic behav-
iour of a biological network by following single cells 
over time. For example, asynchronous oscillations in 
protein signals, such as the transcription factors p53 and 
nuclear factor (NF)-κB, in individual cells are often aver-
aged out in population-level measurements, or frozen 
in time by immunofluorescence-based cytometry  42,44. 
Another feature of live-cell microscopy is that patterns 
of behaviour can be identified within subpopulations by 
measuring many cells (102–103) in parallel. In a study of 
the p53 signalling network, individual cells exposed to 
UV radiation were observed to respond with 1 to greater 
than 10 digital pulses of p53 nuclear translocation, an 
oscillatory behaviour that persisted for 2–3 days after the 
initial stimulus46. Further analysis showed that the pulses 
varied significantly in amplitude but not in period; these 
data were then used for the development of a biochemical 
model by identifying the best-fitting model topology  46.

The studies discussed above show the power of single-
cell assays in providing rich data that can be used in 
modelling. Nonetheless, single-cell techniques will never 
equal biochemical methods in the breadth of signals that 
can be assayed (FIG. 2). The key is integrating population 

and single-cell data, for example, by using quantitative 
models to represent the behaviours of populations of 
single cells45.

Integration of models and data sets
Following the development of a data-collection strategy, 
several steps are involved in transforming raw measure-
ments into systematic data that is useful for quantitative 
mathematical modelling. These include: data validation 
and error estimation; data normalization and fusion; data 
scaling; derivation of computed metrics; and comparison 
of model and data.

Data validation and error estimation. The specificity 
and linearity of an assay are the first concerns during 
data validation. In affinity-based approaches, problems 
often arise from cross-reactivity of antibodies with 
proteins other than the target. Immunoblots provide 
useful information on antibody specificity because 
they separate proteins by mass, but it can be difficult 
to validate the specificity of protein arrays or in-cell 
westerns that rely on affinity capture or direct affinity-
based detection. In these cases we typically compare 
results obtained with different antibodies, use RNA 
interference or chemical inhibitors to deplete signals, 
or cross-validate measurements with an independent 
technique (often immuno blotting). The relationships 
between measured and actual signal values must also 
be determined. Fortunately, this can usually be accom-
plished by appropriate dilution of samples, although 
absolute calibration requires recombinant proteins and 
careful titration. Typically, good assays are monotonic 
and stable over a 10–100-fold range of signal, and within 
this range measured values can be converted into true 
values using a standard curve.

The error that is associated with measurement must 
also be determined. Fixed error is usually identified when 
several methods are compared. The most obvious way to 
estimate variance is to repeat a measurement many times 
(that is, increase n) and estimate the standard deviation. 
However, limited amounts of sample, costly reagents 
and limited time usually make it impossible to obtain 
enough replicates for standard statistical methods. 
Duplicate measurements are therefore common, and in 
this case error must be estimated by other means. One 
highly effective approach is to develop a quantitative 
physical model of the data-collection process itself. For 
example, the effects of cell-to-cell variability, finite opti-
cal resolution, fluorophore chemistry, reliability of data-
processing algorithms and so on were used to precisely 
model errors arising in fluorescence speckle microscopy57,58. 
Another less rigorous approach is to use error estimates 
that are obtained from repeated sampling of a single sig-
nal as a best guess of average error. In this case we still 
need to be concerned with mistakes that are made in the 
course of a complex experiment, and duplicate measures 
on different samples (that is, biological replicates) are 
an absolute minimum requirement. It should be noted 
that techniques that are potentially applicable to pro-
tein signals have also been developed for low-replicate, 
biological DNA-microarray data59.
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Box 2 | Scaling of data

Scaling of data is useful to highlight trends or features that might be obscured by dominant signals in the data set. 
For example, panel a shows a heat map that describes Jun N-terminal kinase (JNK) activity over a time course of 24 h 
(horizontal axis) in response to 12 different stimulation conditions (vertical axis). The time courses for two individual 
conditions (stimulation with 5 ng ml–1 or 100 ng ml–1 tumour necrosis factor (TNF)) are shown below the heat map. 
Within the unscaled data set in panel a, it is obvious that high concentrations of TNF induce an early and strong peak of 
JNK activity, whereas lower concentrations induce a weaker peak. 

To highlight the progression in time of the JNK-activity signal in conditions in which maximal JNK activity is much 
lower (for example, 5 ng ml–1 TNF), we must scale the measurements to the maximal value in each time course. That is, 
we express all values relative to the peak activity in the time course (panel b). After scaling, relative signal strengths 
across conditions are lost, but differences and similarities in timing become apparent. Although early peaks coincide, 
there is a second wave of JNK activity under several treatment conditions, and, although this second wave is of much 
smaller amplitude than the initial peak, it is also variable across different conditions.

Third, to highlight variation across different stimuli, data should be scaled according to the maximal value across all 
treatments on a time point by time point basis (panel c). This allows for the identification of conditions that have a 
significantly higher signal at all time points (bottom row in heat map, panel c).

Last, a commonly used data-processing step for regression-based models is unit-variance scaling. Scaling each 
variable (here, JNK activity at each time point) by the square root of its variance results in all the scaled variables having 
a variance of one. Absolute differences are lost, but the relative variability across stimulation conditions for each time 
point is preserved and can be explicitly analysed without bias from differences in signal amplitude (panel d). 
Data from REF. 9.
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Orthogonal design
A method of validation in which 
conditions that were previously 
varied from experiment to 
experiment in the course of 
collecting a full data set are 
varied in a single experiment 
such that what was previously 
separated in time now 
becomes contemporaneous.

Data normalization and fusion. Assembly of a data 
compendium requires the fusion of multiple data types, 
many of which are collected over many weeks or months. 
Correctly normalized and validated data compendia allow 
quantitative analysis to be performed over a much larger 
landscape of experimental conditions than is possible 
using single experiments. Therefore, effective means to 
fuse heterogeneous data are essential. Data normalization 
is a crucial part of data fusion and involves correcting for 
changes in experimental and assay conditions that can be 
measured, but not necessarily controlled. Normalization 
usually involves calibrating measurements against a 
set of standards that are included within each run and 
then adjusting raw values to that of the standard, taking 
into account cell number or total protein concentration. 
It should be noted that calibration against ‘housekeeping’ 
proteins is not necessarily reliable, as the levels of many 
of these proteins fluctuate under specific experimental 
conditions, such as apoptosis60.

Following normalization, one has to verify that com-
bining data from several different assays has generated a 
single self-consistent data set across which comparisons 
can be made. If data were acquired in a succession of 
experiments that were separated in time, one efficient 
way of verifying the consistency of the fused set is to 
replicate a subset of measurements in a separate experi-
ment using orthogonal design9. The data compendium is 

self-consistent if the new measurements correlate well 
with the equivalent measurements in the initial data set. 
We have observed cases in which it has been more effec-
tive to build multiple models from subsets of data, each 
collected in the course of a single experiment, and then 
fuse the models rather than the data. Although a rigor-
ous analysis has not yet been done, fusion at the level 
of models seems to be most effective when biological 
variability is high but measurements are accurate.

Data scaling. Once a data set has been validated, nor-
malized and fused, it is possible to explore approaches to 
scaling it (BOX 2). Scaling involves the transformation of 
axes in such a way as to highlight features or trends in the 
data. One simple form of scaling is switching from lin-
ear to logarithmic axes; more complex forms of scaling 
involve adjusting the axes relative to some global prop-
erty of the data. For example, in a time course of protein 
signals collected from many different perturbations, 
regression techniques tend to focus on the largest abso-
lute changes in signal strengths, even if these changes 
occur in every perturbation. However, if unit-variance 
scaling (BOX 2) is applied, modelling focuses on what is 
the most characteristic of each perturbation. Data scal-
ing can have profound effects on data-driven models9 
and it is necessary to compare several scaling methods 
before selecting one.

Box 3 | Matching data to models

Here we provide several illustrations of the ways in which 
experimental data can relate to models. For a rigourous treatment, 
see the accompanying Review by Jaqaman and Danuser in this issue. 
In the most straightforward case (panel a), experimental data directly 
correspond to the structure or the parameters of the model. For 
example, protein-interaction microarrays and substrate-protein 
microarrays identify connections between molecules in the network 
(panel a, arrows). Similarly, values for protein concentrations (panel a, 
numbers in callouts) can be determined by protein-profiling 
microarrays, and values for rate constants (panel a, numbers near 
arrows) can be determined by activity assays.

In another simple case (panel b), the dynamic behaviour of the 
model is directly comparable to an experimental time course (here, 
using molecules A, E and F). Experimental values for signals at various 
time points (panel b, square data points) can be overlaid on the 
simulated signals from the model (panel b, lines). The extent to which 
the experimentally observed behaviour matches the model 
simulation can be assessed by quantitative methods.

In a more complex case, computed metrics (descriptive) can be 
used to compare experimentally observed behaviour with the model. 
For example, it might be desirable to examine the area under a signal 
peak (panel b, shaded green area). To examine the behaviour of this 
metric, time course data can be collected under conditions in which 
the network is perturbed (for example, by using RNA interference to 
change the concentrations of proteins A and H). From each 
experimental time course, the signal-area metric can be calculated 
and plotted as a function of the perturbed protein levels (which can 
also be measured experimentally; panel c, green circles). For 
comparison, model simulations can be run under conditions that 
correspond to the experimental perturbations and the computed 
metric can be calculated and plotted for each simulation (panel c, 
surface plot). This type of analysis can provide insight into the 
mechanisms that underlie higher-order behaviours of the system.
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Computed metrics. Computed metrics are data trans-
formations in which single measurements are used to 
compute a more global property of the signal, such as 
the frequency of oscillation, the area under the curve 
of a peak or the rate of rise. In many cases, computed 
metrics seem to have a higher information content 
than individual data points alone9,46. This arises in part 
because most regression techniques treat each time point 
in isolation so that crucial dynamic information is lost. 
The use of computed metrics captures key features of the 
time dependence of signalling in a single variable52,58.

Comparing data and model. It is important to compare the 
data to the model during model construction, when 
the model is calibrated against training data, and when the 
predictions and hypotheses that are generated by 
the model are tested. In some cases, this comparison is 
straightforward (BOX 3). For example, model simulations 
can be used to produce a predicted time course of kinase 
phosphorylation that can be directly compared to experi-
mental phosphoprotein levels. It is also possible to deter-
mine the relative importance of each piece of data to the 
model. In this way, a quantitative evaluation of the data-
collection process itself can be done (see accompanying 
Review by Jaqaman and Danuser in this issue).

Conclusions
To model signalling and regulatory networks, quanti-
tative data on multiple parts of a protein network are 
required. However, signalling networks are built from 
proteins and other biomolecules with diverse functions 
and properties, and this poses a significant challenge 
for data collection: several measurement techniques 
that yield heterogeneous data must be combined to 
characterize the signals that are transmitted through 
the networks. Technical advances in biochemical analy-
ses using physical, affinity-based and activity-based 
methods have created more accurate, more sensitive 
and higher throughput methods. Similar improvements 
in fluorescent labelling and simultaneous detection 
of multiple fluorophores have increased the value of 
microscopy-based and flow-cytometry-based meas-
urements to systems biology. However, what has been 
missing is a commitment by systems biologists to use 
multiple measurement techniques simultaneously and 
to develop methods for fusing the resulting data into 
self-consistent, validated data compendium. As the value 
of these compendia for physicochemical and statistical 
modelling becomes clear, we can expect much greater 
attention to issues that surround data fusion, modelling 
and analysis.
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