
The increasing availability of high-throughput and multi-
plex techniques for quantifying signalling and cellular 
responses1–4 makes it immediately feasible to collect 
large data sets on protein abundance and activity 5–10. The 
paradox for systems biology is that these large data sets 
by themselves often bring more confusion than under-
standing11. In this regard, reductionist experimental 
approaches seem to make more sense — simplify things 
down to the point that we can get our heads around 
them. However, the systems biologist has an impor-
tant tool that can handle complexity: computation. To 
improve understanding without adding more confu-
sion, however, computational models must (at least) 
be indicative of a mechanism and (at least) be based on 
experimental data12.

Modelling approaches can be based on prior bio-
logical understanding of the molecular mechanisms 
involved (see the accompanying Review by Aldridge, 
Burke, Lauffenburger and Sorger in Nature Cell Biology). 
Alternatively, models can be constructed based solely 
on analysing the data itself, without having to make any 
assumptions about the underlying mechanisms. These 
so-called ‘data-driven models’ allow multivariate bio-
logical measurements to become tractable to our intui-
tion and often reveal new surprising and unanticipated 
biological insights.

In this User’s guide article, we introduce three data-
driven modelling approaches that have brought under-
standing to signal-transduction networks and complex 
biology. First, we discuss clustering as a means for data 
organization. Then, we describe principal components 
analysis (PCA) as a method for data condensation. Last, 
we explain partial least squares (PLS) regression as a 
technique for data prediction. Because each approach 
uses the same underlying mathematics to analyse 

multivariate data sets, it is important to understand how 
biological measurements are portrayed analytically to data-
driven modelling algorithms, and what these algorithms 
are trying to accomplish.

From data matrices to data-driven models
A systems biology approach to studying cell signalling 
entails measuring the levels, localization and activities of 
several proteins over a range of timescales and treatment 
conditions. Cellular signals are not static but dynamic13,14, 
and time courses are perhaps the most fundamental type 
of signalling data set. Each measured kinase or substrate, 
for example, constitutes a signalling variable in the data 
set, and each time point constitutes an observation. For 
simplicity, we focus only on time points as observations, 
although different treatment conditions and perturba-
tions that affect signalling variables could likewise be 
considered as observations. Together, the observations 
(as rows) and signalling variables (as columns) can be 
represented as a ‘data matrix’ (FIG. 1a).

We routinely use data matrices as the basis for con-
structing time-course plots (FIG. 1b). These plots help 
users to visualize changes in signals over time while 
retaining the quantitative information of the original 
data matrix. However, time-course plots are limiting for 
systems applications that track many signals together. 
The overlap and intersection of large numbers of time 
courses provides little insight into how signals operate 
as a network15, because each measurement is plotted 
separately with respect to time. Individual signals vary 
dynamically, but can also co-vary with respect to one 
another.

An alternative view of the same data set is to con-
sider each signalling variable at its own axis (FIG. 1c). 
Here, the position of a time point is determined by the 

*Cell Decision Processes 
Center, Massachusetts 
Institute of Technology, 
Cambridge, Massachusetts 
02139, USA, and Department 
of Cell Biology, Harvard 
Medical School, Boston, 
Massachusetts 02115, USA.
‡Cell Decision Processes 
Center, Center for Cancer 
Research and Departments of 
Biology and Biological 
Engineering, Massachusetts 
Institute of Technology, 
Cambridge, Massachusetts 
02139, USA.
Correspondence to M.B.Y. 
e-mail: myaffe@mit.edu
doi:10.1038/nrm2041

Matrix
A table of numbers. 
Alternatively, a matrix can be 
viewed as an arrangement of 
row or column vectors.
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Abstract | New technologies are permitting large-scale quantitative studies of signal-
transduction networks. Such data are hard to understand completely by inspection and 
intuition. ‘Data-driven models’ help users to analyse large data sets by simplifying the 
measurements themselves. Data-driven modelling approaches such as clustering, principal 
components analysis and partial least squares can derive biological insights from large-scale 
experiments. These models are emerging as standard tools for systems-level research in 
signalling networks.
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Vector
A mathematical quantity that 
has both magnitude (or length) 
and direction. The entries of a 
vector specify the magnitude 
of its projection in different 
directions.

Linear algebra
A branch of mathematics that 
involves linear manipulations of 
vectors and matrices.

Transformation
A mathematical function that 
can be applied to vectors and 
matrices.

individual signal-activation strengths (for example, 
of v-akt murine thymoma viral oncogene homologue 
(AKT), c-jun N-terminal kinase (JNK), and mito gen-
activated protein kinase-activated protein kinase-2 
(MK2) in FIG. 1c), which project the observation along 
the signalling axes. Each signalling axis functions as a 
dimension for a measured variable, exactly as x-, y- and 
z-axes are dimensions for measurements of position. 
A ‘data space’ consists of the complete set of signalling 
axes (and the projection of the observations along these 
axes; FIG. 1c).

Similar to a time-course plot, a data space is quan-
titatively equivalent to the starting data matrix (FIG. 1a). 
Importantly, however, covariation between signals is 
retained: flattening the data onto any surface of the data 
space gives the correlation between the two signals; the 
axes of these determine the surface (FIG. 1c). Representing 
data matrices as data spaces is also mathematically 
advantageous, because experimental observations are 
cast as vectors in a coordinate system that is defined 
by the measured signals. These vectors (as well as 
the coordinate system itself) can then be analysed by 
linear-algebraic techniques.

Applying linear algebra to data spaces. The use of linear 
algebra is beneficial for the types of data that are encoun-
tered in systems biology. One reason for this is because, 
after three measured signals, we run out of spatial 
dimensions to use for quantitatively viewing the data 
space. For instance, in FIG. 1c, where would an axis for 
the AKT-substrate (AKT-sub) measurements point rela-
tive to the AKT, JNK and MK2 axes? By contrast, there is 
no limit to the number of dimensions that can be accom-
modated by vectors or the mathematical transformations 
that involve them. A second reason is that by algebrai-
cally restructuring the data space, it becomes possible to 
identify a small number of ‘optimal’ dimensions in the 
experimental observations. These optimal dimensions 
are combinations of signalling variables that allow a sim-
ple, efficient approximation of the original data space 
and therefore constitute a data-driven model.

The goal of data-driven modelling is to mathemati-
cally specify how the optimal dimensions are defined 
and then extract them from the data space. Ideally, for 
data-driven models to help our intuition, the optimal 
dimensions must provide a new, quantitative perspec-
tive on the underlying biology that is fundamentally 
different from that of the original data set alone. The 
usefulness of any data-driven model is balanced by 
its predictive power and biological insight, both of 
which are determined by how an optimal dimension 
is defined.

Data organization through clustering
The purpose of clustering is to improve the arrangement 
of the data matrix by organizing rows or columns (or 
both) in a way that reveals potential biological mean-
ing. For systems biology measurements, organization is 
achieved by grouping, for example, signalling proteins 
with similar behaviour. The key to successful clustering 
is defining what is meant by ‘similar’, which depends 
on how the data are framed. It is convenient to explain 
clustering through a vector-based approach, in which 
similarity is expressed as a ‘distance’ between either the 
vectors themselves or the parameters that are derived 
from the vectors. In general, how distance is defined is 
more important than the particular algorithm that is used 
to cluster the distances16.

The two general types of clustering are divisive clus-
tering and agglomerative clustering. Divisive clustering 
takes an entire set of data and divides it successively 
into groups, in which each group contains those vectors 

Figure 1 | Alternative representations of a systems 
biology data set. a | A data matrix of time points 
(considered here to be observations) and four intracellular 
signals (considered here to be signalling variables): v-akt 
murine thymoma viral oncogene homologue (AKT) activity, 
c-jun N-terminal kinase (JNK) activity, mitogen-activated 
protein kinase-activated protein kinase-2 (MK2) activity 
and AKT-substrate (AKT-sub) phosphorylation. b | Time-
course plots of the data matrix. AKT, JNK and MK2 
measurements are plotted against time. c | Data space 
defined by AKT, JNK and MK2 signalling. AKT, JNK and MK2 
are plotted along their respective coordinates, and time is 
indicated next to each marker. AKT–JNK, AKT–MK2 and 
JNK–MK2 correlations are shown as projections onto the 
data space (see 5-min observation). For parts b and c, AKT-
sub has been omitted for clarity. AKT, JNK and MK2 data are 
adapted from REF. 6.
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Row vector
A vector that is composed of 
one entire row of a matrix with 
dimensions that are specified 
by the matrix columns.

Euclidean distance
A mathematical quantity that 
calculates the measurable 
geometric distance between 
two vectors pointing from a 
common origin.

Column vector
A vector that is composed of 
one entire column of a matrix 
with dimensions that are 
specified by the matrix rows.

Pearson distance
A mathematical quantity that 
calculates the difference in 
direction between two vectors 
pointing from a common origin.

that are most closely related. By contrast, agglomera-
tive clustering starts with each vector individually and 
builds clusters by grouping together those vectors that 
are similar. Divisive clustering is more computationally 
involved and less commonly used. Therefore, we focus 
here on agglomerative clustering and refer the reader 
elsewhere for more detailed methods17,18. To show the 
importance of distance measures, we compare cluster-
ing using row vectors and Euclidean distances to clustering 
using column vectors and Pearson distances. Ultimately, the 
ability to extract meaning from clustering depends on 
the user’s prior biological understanding of the objects 
that are organized (see below).

Row vectors and Euclidean distance. The dynamic tra-
jectory of a signalling time course, as shown in FIG. 1b, 
can alternatively be viewed along the signalling axes 
themselves (FIG. 1c). Individually, each observation (or 
time point) can be treated as a row vector (t; FIG. 2a) that 
points from a common origin to a position in the data 
space that is based on the variables that have been meas-
ured (FIG. 2b shows a subset of row vectors). The number 
of row vectors in a data matrix equals the number of 
observations (time points), and each row vector con-
tains the projection of the signalling variables for that 
observation (FIG. 2a).

The simplest way to cluster observations is to group 
row vectors that lie closest together based on their geo-
metric (or Euclidean) distance. For instance, the following 

equation calculates the Euclidean distance (edist) 
between row vectors t5 min and t15 min in the AKT–JNK–
MK2 data space:

edist(t5 min, t15 min) = √ ((AKT5 min – AKT15 min)2 + 

(JNK5 min – JNK15 min)2 + (MK25 min – MK215 min)2)        (1)

For hierarchical clustering, the two vectors with the 
smallest Euclidean distance are combined into a new 
single group (for example, group t16 h – t24 h in FIG. 2b). 
Then, the distance between the remaining row vectors 
and this new group is measured and compared with the 
distance between the remaining vectors themselves. The 
next two most similar vectors form a new group (group 
t4 h – t8 h in FIG. 2c). As clusters accumulate, it becomes 
necessary to consider the distances between clusters, 
as well as vector–vector and vector–cluster distances. 
Eventually, the next most similar cluster will involve the 
combination of two prior clusters into a larger group 
(that is, group t4 h – t8 h – t16 h – t24 h in FIG. 2d). The distance 
between clusters can be measured in different ways (see 
REF. 16 for details).

We can diagrammatically represent each step in the 
clustering process by generating a hierarchical ‘tree’ 
(or dendrogram, FIG. 2e) in which all of the vectors are 
eventually combined into a single large group. This tree 
compresses the high-dimensional similarity relation-
ships between each of the individual row vectors (FIG. 2b) 
into a simple two-dimensional graph of clusters (FIG. 2e). 

Figure 2 | Clustering of row and column vectors by different distance metrics. a | Row–vector representation of the 
time points (t) shown in FIG. 1a. b | The first hierarchical cluster, t16 h – t24 h (dashed circle), identified by Euclidean distance. 
Each vector represents one time point and its position in the data space is defined by the magnitude of each signalling 
variable on the respective axes. c,d | Second and third hierarchical clusters, t4 h – t8 h and t4 h – t8 h – t16 h – t24 h (dashed 
circles), identified by Euclidean distance. e | Complete dendrogram for the clustering of the time points shown in part b. 
Vertical lines (red) indicate the clusters identified in parts b, c and d. f | Column–vector representation of the measured 
signalling proteins shown in FIG. 1a. g | The projection of AKT, MK2 and AKT-substrate (AKT-sub) phosphorylation onto 
three time-axis dimensions. h | Euclidean-distance-based dendrogram of the measured signalling proteins shown in part g. 
i | Comparison of AKT, MK2 and AKT-sub time-course plots. Note that AKT-sub is geometrically closer to MK2 (based on 
Euclidean distance), but its pattern of activation is closer to AKT (based on Pearson distance). j | Pearson-distance-based 
dendrogram of the measured signalling proteins shown in part g. Note that the clusters are different from those shown 
in part h. AKT, JNK and MK2 are defined in FIG. 1.
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k-means clustering
A clustering technique in which 
observations are grouped into 
a fixed number of pre-specified 
clusters called centroids.

Eigenvalue
A mathematical quantity that 
provides the scaling factor for 
an eigenvector of a given 
transformation. For PCA, 
eigenvalues quantify the 
contribution of different 
portions of the data set to the 
overall measured variation.

Drawing a vertical line down the tree divides the data 
into k discrete clusters based on the number of branches 
that intersect with the vertical line. Moving the line to 
the left on the tree decreases k (identifying larger clus-
ters that group many observations), whereas moving the 
line to the right increases k (smaller clusters with fewer 
groups of observations).

Varying k therefore shows all of the possible ways 
the individual observations can be related to each other, 
given the information in the data set. Meaningful clus-
ters emerge when they match existing knowledge about 
the observations, such as early versus late time points or 
distinct treatment conditions. If there is a very strong 
prior expectation about the number of clusters, this 
can be specified directly through other clustering tech-
niques that are not hierarchical, such as k-means clustering 
(Supplementary information S1 (box)).

Column vectors and Pearson distance. The preced-
ing example used row vectors to cluster together time 
points that had similar signalling activities. Often, 
however, we wish to understand how one signalling 
variable (for example, measured kinase activity or 
substrate phosphorylation) relates to another signal-
ling variable. To do this, we need to re-evaluate the 
data matrix from the point of view of column vectors 
(FIG. 2f). Here, the observations (rather than the signal-
ling variables) constitute the dimensions of the data 
space. Each signalling variable then forms a column 
vector that projects along the observation (time) axes 
based on the activity of that variable for the different 
observations (see FIG. 2g for the 5-min, 2-h and 24-h 
time-point axes).

We could attempt to cluster column vectors by 
Euclidean distance as was done for row vectors (FIG. 2h). 
However, because the magnitudes of the column 
vectors that reflect the amplitude of the signalling 
responses often differ significantly, clustering that is 
based on Euclidean distance might give misleading 
results. For example, the magnitude of the phospho-
rylation response of AKT-sub might lie closer to the 
activity of MK2 by Euclidean distance in time-axis 
space, but its pattern of activation parallels the kinase 
activity of AKT (FIG. 2i). We might therefore wish to 
cluster column vectors that have similarly shaped tra-
jectories, regardless of their Euclidean proximity in the 
data space (FIG. 2g). To match patterns of activation, we 
must consider the covariation between column vectors. 
The covariance (cov) between AKT and JNK column 
vectors, for example, is defined as:

cov(AKT, JNK) =    

                                  Σ (AKTi – AKT)(JNKi – JNK) 
1

No. of time points i = 0 min

24 h
(2)

AKT and JNK are the AKT and JNK activities averaged 
across all observed time points. The covariance of the 
column vectors are then divided by the square root of 
the product of their individual variances to obtain the 
Pearson correlation coefficient, which can be used as 
the basis for clustering16.

The values of the Pearson correlation coefficient range 
from –1 to +1, with +1 indicating strong positive correla-
tion between the variables, –1 indicating that the vari-
ables are anti-correlated, and 0 reflecting no correlation. 
The Pearson distance, defined as one minus the Pearson 
correlation coefficient, can be used for clustering exactly 
as the Euclidean distance was used for organizing data 
matrices by hierarchical clustering (FIG. 2j) and k-means 
clustering (Supplementary information S1 (box))16. 
More refined methods of clustering are also available, 
such as model-based clustering17, in which the clusters 
are approximated as a mixture of Gaussian distributions, 
and the row or column vectors are treated as random 
samplings from the clusters. In model-based cluster-
ing, the relevant distance measurement is called the 
Mahalanobis distance, which is the Euclidean distance 
scaled by the covariance between vectors16. So far, how-
ever, biological applications of model-based clustering 
have been limited to studies of gene expression17.

Deriving biological insight. Clustering is most successful 
when the observations and variables in the data matrix 
contain a mix of known and unknown biological mecha-
nisms. Recent phenotypic19, pharmacological20 and RNA 
interference (RNAi)-based21 screens have used cluster-
ing to indicate the functions of unknown genes or small 
molecules by their association with recognized perturba-
tions. Clustering time-course data with many variables 
can also be used to separate kinetic clusters that are pos-
sibly subject to the same upstream regulators22. These 
‘guilt by association’ studies benefit from clustering by 
focusing the user’s attention to the subset of data within 
the clusters, rather than the entire starting data set.

Principal components analysis
Clustering is a quantitative way to inspect the overall 
organization of the data matrix, but the technique does 
not simplify the large number of dimensions in the data 
space. PCA achieves dimensionality reduction by find-
ing new axes, called principal components, that identify 
the linear combinations of signalling axes most tightly 
connected with one another. Principal components 
function as super-axes, and allow users to view the 
entire data space in just two or three dimensions that 
capture the most important information in each of the 
original signalling axes. Mathematically, this approach 
amounts to analysing the data matrix (after appropriate 
scaling and normalization; see Supplementary informa-
tion S2 (box)) for overall covariance of each signalling 
variable with every other signalling variable (BOX 1). The 
principal components are defined by weighting signals 
with high covariance and de-emphasizing signals that 
show little covariation with other signals. In this way, 
PCA condenses measurements to highlight the global 
patterns in the data set as reflected by just two or three 
dimensions that capture the maximal covariation 
between all of the signals. Mathematically, the prioriti-
zation of signals based on covariation is accomplished 
by quantifying the importance of unique combinations 
of signals to the overall covariance of the data set by 
using eigenvalues (BOX 1).
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Scores vector
The principal component 
vector that describes how 
strongly each observation 
projects along the principal 
component.

Loadings vector
The principal component 
vector that describes how 
strongly each measured signal 
contributes to the principal 
component.

Principal components by scores and loadings. Eigenvalues 
allow the identification and ranking of the importance 
of combinations of signals to the overall covariance of 
the data set. However, eigenvalues can be difficult 
to interpret because they do not directly relate back to 
the original data matrix (FIG. 1a). Rather than explicitly 
calculating eigenvalues, therefore, most practical appli-
cations of PCA identify principal components by break-
ing down (or factorizing) the data matrix into a sum of 
vector products. Just as there are many ways to factor-
ize numbers (for example, 16 = (2 × 2) + (4 × 3) and 
16 = (2 × 4) + (8 × 1)), there are many ways to factor-
ize the data matrix. Therefore, the challenge for PCA is 
to find a factorization that recapitulates the eigenvalue 
profile of the data matrix (BOX 1).

How can we guarantee that the factorization con-
verges to the principal components of the data set? First, 
we define two types of vector, called scores vectors and 
loadings vectors, that will be multiplied together to form a 
principal component for the factorization. A scores vec-
tor is similar to a column vector (FIG. 2a) and contains 
the projection of each observation (time point) along 
the principal component. A loadings vector is similar to 
a row vector (FIG. 2f) and contains the linear combination 
of signalling variables that defines the principal compo-
nent. To select the loadings vector of the first product, 
we use a search algorithm that identifies the direction 
in the data space that captures the maximal variance 
from all signals in the starting data set (FIG. 3a). For the 
example data set, the first principal component points 
towards the JNK and MK2 axes because of the strong, 
concerted activation of these pathways. The search to 
maximize the variance that is captured is equivalent 

to selecting the eigenvector with the largest eigenvalue in 
the covariance matrix (BOX 1). Next, the first scores vec-
tor is identified by projecting the observed data set onto 
the first loadings vector to provide a one-dimensional 
approximation of the data matrix. Together, the first pair 
of scores–loadings vectors identifies the first principal 
component of the data matrix.

The derivation of subsequent principal components 
takes advantage of another constraint that is imposed 
on loadings vectors. Like x-, y- and z-axes in spatial 
dimensions, loadings vectors are required to be linearly 
independent (or orthogonal) from one another. Because 
information must be separated into distinct loadings 
vectors, this allows the second principal component to 
be calculated iteratively. The variance that is captured 
by the first principal component is subtracted from the 
data matrix, and the second loadings vector is optimized 
to capture as much of the residual variance as possible. 
For the example data set, the second principal com-
ponent points strongly towards AKT and away from 
JNK and MK2, capturing the unique multiphase acti-
vation of AKT. The residual is projected on the second 
loadings vector to calculate the second scores vector 
that, together with the first principal component, gives 
a two-dimensional approximation of the data matrix. 
Additional principal components can continue to be 
iteratively defined up to the number of observations or 
signalling variables (whichever is smaller).

Computer implementations of PCA use numerical 
approaches to maximize the functions defining the 
loadings vectors and to identify the final number of 
principal components23. The end result is the factoriza-
tion of the data matrix into a series of scores–loadings 

Box 1 | Eigenvalues and eigenvectors

Overall covariance is itself a matrix (C) that describes the 
covariation (cov) between each measured signal and every 
other measured signal. For the example data set, 
C is defined as:

cov(AKT, AKT)    cov(AKT, JNK)    cov(AKT, MK2)
cov( JNK, AKT)    cov( JNK, JNK)    cov( JNK, MK2)
cov(MK2, AKT)    cov(MK2, JNK)    cov(MK2, MK2)

C =

C can be viewed as a linear transformation that can be 
applied to any vector in the data space. For instance, to transform the 5-min row vector t5 min, which contains AKT5 min, 
JNK5 min and MK25 min (FIG. 2a) with C, we would multiply C by t5 min to give us Ct5 min. In general, this transformation takes the 
starting vector and changes both its magnitude and its direction (see the figure, part a). For certain special vectors (y) in 
the data space, however, the transformation of C leaves the direction of the vector unchanged — only its magnitude is 
altered. This is equivalent to multiplying the vector y by a scalar λ: Cy = λy (see figure, part b). These special vectors (y) of C 
are called eigenvectors and the corresponding scalars (λ) are called eigenvalues. For the covariance matrix, the direction of 
an eigenvector identifies a fraction of each measured signal that covaries with all the others. The eigenvector in part b, for 
example, consists mostly of AKT and MK2 activity, with a small contribution from JNK. The corresponding eigenvalue 
quantifies the strength of the global covariation that is specified by the eigenvector. The eigenvector of C with the largest 
eigenvalue identifies the direction in the data space that can capture the most information (or variance) from the original 
observations. Likewise, the eigenvector with the second largest eigenvalue identifies the direction that can capture the 
next largest amount of information that was not captured by the first eigenvector, and so on. By using only the eigenvectors 
with the largest eigenvalues and omitting those with the smallest, the data matrix can be approximated by its most salient 
variations. Importantly, the ranked eigenvalue–eigenvector pairs identify the principal components of the data set, and 
these form the foundation of principal component analysis (see main text).

AKT, JNK and MK2 are defined in FIG. 1.
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pairs (principal components) that separate the meas-
urements based on their contribution to the overall 
variance of the data set (FIG. 3a). For important technical 
considerations and variants of PCA, see Supplementary 
information S2 (box).

Deriving biological insight. Principal components define 
a reduced dimensionality that is optimal for capturing 
covariance in the data. For covariation to lead to biological 
understanding, however, it is essential to link optimized 
dimensions back to measured quantities. The scores and 
loadings vectors of PCA directly connect the data space 
to the principal component space. Each loadings vector 
contains the quantitative contribution of the signalling 
variables to the principal component. Together, the load-
ings vectors orientate the signalling axes of the principal 
component space (FIG. 3b). Reciprocally, each scores vec-
tor indicates how strongly the observations (time points) 
plot out along the corresponding principal component 
(FIG. 3c). Complex projections of observations in the data 
space (FIG. 1c) can therefore be visualized more simply by 
looking at how the same observations project along the 
principal components of the data set.

For viewing high-dimensional data spaces compactly, 
PCA has proved to be valuable for a number of biological 
applications. In neuroscience, PCA has been used suc-
cessfully to discriminate sensory decisions24 and odours25 
based on cellular firing patterns. PCA is also a common 

visualization technique in microarray analysis26 as well as 
in fields such as chemical biology 27–29 and plant metabo-
lism30. PCA has been shown to qualitatively discriminate 
apoptotic cell fates based on measured signalling pro-
files15. In systems biology, PCA has also been coupled 
with sensitivity analysis to help reduce the complexity 
of mechanistic signalling models31. As experiments that 
quantify networks of protein levels and interactions5–10 
become more common, PCA should become popular 
as a quick, intuitive technique for inspecting complex 
signalling data sets.

Partial least squares
PLS is similar to PCA in that it decomposes the data 
into a set of optimal dimensions based on scores and 
loadings vectors. What is the difference between PLS 
and PCA? In PCA, the entire data set is factored into 
principal components in an unsupervised and essentially 
automatic manner. Users obtain optimal dimensions 
that best capture how all of the signals co-vary with 
respect to one another, but it is not possible using PCA 
to generate or test a hypothesis in which some parts 
of the data set are causally related to other parts (for 
example, signalling responses observed at late times 
that can be predicted from events at earlier times).

By contrast, PLS identifies optimal, principal-
components-based dimensions from a proposed 
relationship. These relationships are posed by splitting 

Figure 3 | Principal components identified by PCA and PLS. a | Numerical approach for calculating principal components 
(PC) for principal components analysis (PCA). The first principal component is selected to maximize the variance that is 
captured, and this contribution is subtracted from the starting data set to calculate the residual. Subsequent principal 
components maximize the variance that is captured in the residual until only small, uninformative residuals remain. Each 
step in the procedure is shown as a time-course plot and as vectors in the data space. b | Loadings vectors for the first two 
principal components (PC1 and PC2) identified by PCA for the AKT–JNK–MK2 data space. c | Scores vectors projected 
along the first two principal components identified by PCA (red circles) and partial least squares (PLS; blue circles) for the 
AKT–JNK–MK2 data space. d | Loadings vectors for PC1 and PC2 identified by PLS using the AKT–JNK–MK2 data space to 
predict AKT-substrate (AKT-sub) phosphorylation (blue) differ from those obtained by PCA (grey). e | Scores vectors 
projected along PC1 and PC2 identified by PCA (red circles) and PLS (blue circles). For parts c and e, note that the PCA 
scores–loadings (red circles) are different from the PLS scores–loadings (blue circles) because PLS uses AKT, JNK and MK2 
to predict AKT-sub. AKT, JNK and MK2 are defined in FIG. 1.
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the signalling variables of the data set into independent 
variables and dependent variables. The independent vari-
ables together form an independent ‘block’ (X) and the 
dependent variables form a dependent block (Y) for the 
pro posed relationship: Y = F(X). For example, if several 
kinase activities and substrate-phosphorylation events 
involved in apoptosis were measured along with cell-death 
markers, we might designate the kinase-activity and sub-
strate-phosphorylation events as the block of independ-
ent variables and the molecular markers of apoptosis as 
the block of dependent variables32. PLS then identifies a 
linear solution that relates the independent block to the 
dependent block.

Most systems biology data sets lack the large number 
of experimental observations that are needed for calcu-
lating a unique solution that estimates the contribution 
of each signalling variable in the independent block 
to those in the dependent block. It is in this context 
that principal components and PLS are most useful. 
Rather than performing the regression in the original 
data space, PLS reduces the dimensions to a principal-
component space and regresses the independent and 
dependent principal components. This dimensional-
ity reduction is important because it requires fewer 
unknown coefficients, and these are constrained better 
by the observations. These differences from ordinary 
regression techniques allow PLS to calculate a solu-
tion that is biased towards the independent variables 
that are connected most strongly with the dependent 
variables.

Covariance-based principal components. The identifica-
tion of principal components in PLS regression occurs 
by simultaneous factorization of the independent and 
dependent blocks into their own scores and loadings 
vectors, as described above. An important addition for 
PLS is that the linear relationship between independent 
and dependent blocks is enforced by having both blocks 
use the same scores vector (with its length multiplied by 

a fixed number) to perform the factorization. Therefore, 
the prediction of phosphorylation of an AKT-sub from 
AKT, JNK and MK2 activity, for example, will define 
a principal component space in which the time-point 
observations of all four signalling variables point in the 
same direction.

The scores–loadings factorization is calculated 
iteratively by numerical algorithms, as described 
above for PCA23. The critical modification that dis-
tinguishes PLS from PCA is that the loadings vectors 
are optimized to capture the covariance between the 
independent and dependent blocks rather than simply 
the variance. Consequently, the principal components 
that are defined by PLS will be less efficient at capturing 
the data in X compared with PCA, but will be more 
accurate in predicting the data in Y. With the data in 
FIG. 1b, for example, AKT activity would be important 
for predicting AKT-sub, even though the magnitude of 
AKT activation is low compared with the rest of the data 
set. JNK and MK2 are filtered out of a PLS model that 
involves AKT-subs because their activation would not 
co-vary as strongly with AKT-sub. This reprioritization 
of the principal components based on the dependent 
variable(s) occurs by rotating both the loadings vectors 
and the scores vectors (FIG. 3d,e). For further technical 
considerations and variants of PLS, see Supplementary 
information S3 (box).

Deriving biological insight. PLS principal components 
extract the molecular-level evidence in the data that 
quantitatively support the hypothesis posed by the 
model. Both the efficacy of PLS for predicting data and 
the significance of the prediction are determined by the 
strength of the underlying hypothesis. Molecular-level 
studies that link sets of independent and dependent 
variables based on prior biological knowledge (for 
example, using kinase-activity data to predict sub-
strate phosphorylation) are most likely to reveal direct 
mechanisms and new insights.

Table 1 |  Comparison of data-driven modelling approaches

Data-driven 
model

Model 
subtype

Optimal 
dimensions

Strengths Weaknesses

Clustering Hierarchical Dendrogram 
‘branches’

Simple and unbiased; entire dendrogram can 
be scanned for assembly of clusters

Clusters must be assembled pairwise; some 
clusters might lack biological relevance; 
dendrogram does not simplify the data set

Clustering k-means Centroids Clusters are assembled in groups; allows user 
to specify an expected number of biological 
classes; centroids provide a simplified 
representation of the data set

Requires user to specify initial number 
of centroids and their starting positions; 
some centroids might lack biological 
relevance

Principal 
components 
analysis (PCA)

Principal 
components

Simple and unbiased; scores and loadings 
vectors provide simplified representations of 
the data set 

Cannot pose a hypothetical relationship 
within the data set; some principal 
components might lack biological relevance

Partial least 
squares (PLS)

Classification Principal 
components

Allows user to specify an expected set of 
biological classes without the need for 
additional data

Class predictions are inherently qualitative; 
principal components might lack biological 
relevance when classes are too distantly 
related to the independent variables

PLS Prediction Principal 
components

Allows user to pose a biological hypothesis; 
predictions are quantitative

Often requires an additional data set of 
dependent measurements; assumes a linear 
relationship between independent and 
dependent variables
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Early proof-of-principle studies showed that differ-
ent samples could be classified by PLS based on tran-
scriptional33 and proteomic34 measurements. However, 
there was no attempt to link the transcript-loadings 
and protein-loadings vectors to biologically meaningful 
differences between sample groups. This might be less 
important for systems applications that involve biomar-
kers35, and PLS has recently been used to discriminate 
tumour outcomes based on serum profiles36 and histo-
logical scores37. The opportunity to identify mechanistic 
linkages in these studies was limited because of the enor-
mous biological distance between markers and patient 
response.

In contrast to most classifier-based models, quantita-
tive PLS modelling can identify biological mechanisms 
when it is applied to complex but well defined signalling 
networks. We recently constructed a highly predictive 
PLS model that linked ~1,500 apoptosis measurements 
to ~8,500 measurements of the apoptotic signalling 
network, enabling users to predict cell-death responses 
to molecular perturbations and to identify the roles of 
important signalling intermediates32. As our knowledge 
of many signal-transduction pathways increases in com-
plexity, quantitative PLS models will become increasingly 
important (see Supplementary information S4 (box) for 
other recent examples).

Conclusions
In this tutorial, we have described three different 
mathematical approaches for deriving data-driven 
models. All of these techniques analyse complex high-
dimensional data spaces to reveal important biological 
information, but each method has specific advantages 
and disadvantages, depending on the type of data that 
was gathered and the biological questions that are being 
posed (TABLE 1).

One shortcoming of all the data-modelling techniques 
is an inability to incorporate prior information about 
the biological system. Network-components analysis 
(NCA)38 is a data-modelling approach that was recently 
developed to include network topology. NCA biases the 

data-matrix decomposition towards the recognized or 
estimated connectivity ‘strengths’ between measured 
signals. The matrix of connectivity strengths must fulfil 
certain criteria that might not hold for certain systems, 
and NCA (unlike PCA) requires more observations 
than measured variables. Still, NCA adds an alternative 
approach for analysing signalling networks with detailed 
topologies.

Last, and most importantly, the modelling approaches 
described here will not ‘fix’ a badly designed experiment 
or a poorly posed hypothesis. Assays with nonlinear read-
outs are deceptively quantitative. Likewise, treatment 
conditions must be chosen so that they are informa-
tive. Data models are most useful when experimental 
conditions activate the measured network strongly and 
differently for each treatment. Furthermore, for PLS 
modelling, the specified hypothesis must have a strong 
biological foundation. Using large-scale data sets, it is 
possible to find covariation with many dependent vari-
ables (including those that make no sense). Starting with 
a hypothesis that is believably mechanistic will increase 
the probability of extracting new mechanisms from the 
resulting data model.

The data-driven modelling approaches that are 
described in this tutorial are common techniques in 
chemistry, physics and engineering39,40. So far, only 
clustering is widely used in biology, but we expect this 
to change. Just as sequencing and microarray studies 
demanded data organization through clustering, large-
scale studies of signal transduction41 will come to require 
techniques such as PCA and PLS42. Without them, the 
multivariate complexity of contemporary experiments 
will need to be trimmed by hand down to the level of 
our intuition. Long lists of disconnected observations 
might be easier to inspect, but they are unlikely to yield 
the type of understanding43 that is promised by systems 
biology. The capability of data-driven models to analyse 
large-scale data sets simply, quantitatively and compre-
hensively ensures that these approaches will soon be 
standard tools for understanding signal-transduction 
networks.
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