
The objective of systems biology is to elucidate the 
behaviour of a multicomponent system, taking into 
consideration the network of interactions between the 
components of the system. Because of the complexity 
of biological systems, this goal requires the use of math-
ematical models that provide a framework for deter-
mining the outcome of numerous and simultaneous 
time-dependent and space-dependent processes1,2.

A model consists of a set of rules (for example, 
A + B        C

kf

kb
 in a system with three components A, B and C) 

and the corresponding parameters (in this case, the 
rate constants kf and kb). Some mathematical modelling 
approaches involve extracting rules from experimental 
data3–9, whereas others define empirical rules based on 
a priori hypotheses about the mechanism of interest10–15 
(see the accompanying Reviews by Aldridge, Burke, 
Lauffenburger and Sorger in Nature Cell Biology and by 
Janes and Yaffe in this issue). In approaches that define 
empirical rules based on a priori hypotheses, model 
parameters are determined using experimental data, a 
process called regression.

However, experimental data are not perfect and 
models contain many unknown parameters. Therefore, 
the structural identifiability of models must be investigated 
before regression can be used. Also, parameter variances 
and covariances, which are estimated by regression, 
must be used to verify the overall validity of a model in 
representing the data and to ensure the significance and 
determinability of its parameters. Without these diagnos-
tics, regression results can be inaccurate and subsequent 
conclusions can be dubious.

This review is intended as a basic User’s guide to data 
regression in the context of data-driven mechanistic 
modelling of biological systems (FIG. 1). We present com-
mon regression schemes and essential pre-regression 
and post-regression diagnostic tests for the evaluation 

of overall model validity. We also discuss issues that are 
related to the regression of stochastic data. Throughout 
the review, the simple example presented in BOX 1 will be 
used to illustrate regression concepts and techniques.

Pre-regression diagnostics
Prior to the use of regression, the structural identifiability 
of a model must be assessed. Given the structure of a 
model, is it possible to uniquely estimate its unknown 
parameters? What experimental data are required to 
achieve unique parameter identification16–18? If some 
of the necessary data are not available, then structural 
identifiability analysis reveals which parameters must 
be eliminated a priori. Otherwise, unidentifiable para-
meters might lead to regression instability. Importantly, 
the structural identifiability of a model is independent 
of the regression scheme that is employed.

The structural identifiability of a model can be 
assessed by testing the sensitivity of measured output 
to changes in model parameters17,18. Let r = {r1,r2,…,rn} be 
a set of measurable system output and α = {α1,α2,…,αm} 
be the set of unknown model para meters. The sensi-
tivity coefficients sr,α of the output with respect to the 
parameters are defined as:

sri,   j
 =      , i = 1,...,n,  j = 1,...,m                                     (1)

∂ri

∂  jαα

 

The symbol ∂ means ‘infinitesimally small change’. 
Equation 1 defines an n × m matrix, in which the i,jth 
entry evaluates the change in the output ri in response to 
a small change in the parameter αj.

A model is structurally identifiable if its sensitivity 
coefficient matrix satisfies the following two conditions: 
each column has at least one large entry (that is, each 
parameter has a strong influence on at least one measur-
able output); and the columns of the coefficient matrix 
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Structural identifiability
A model is structurally 
identifiable if its parameters 
can be uniquely estimated by 
fitting the model to 
experimental data. Structural 
identifiability is related to the 
sensitivity of process output to 
parameter variations.

Variance
A measure of the dispersion of 
a variable around its average. 
Its square root is the standard 
deviation.

Covariance
A measure of how two 
variables vary relative to each 
other.
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Abstract | Mathematical models are an essential tool in systems biology, linking the behaviour 
of a system to the interactions between its components. Parameters in empirical mathematical 
models must be determined using experimental data, a process called regression. Because 
experimental data are noisy and incomplete, diagnostics that test the structural identifiability 
and validity of models and the significance and determinability of their parameters are 
needed to ensure that the proposed models are supported by the available data.
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Significance
A parameter is statistically 
significant if, given the 
uncertainty in its estimate due 
to noise in the input data, the 
probability that the parameter 
magnitude is different from 
zero not just by chance 
exceeds the confidence 
required by the investigator.

Determinability
A measure for the capability to 
infer the value of a model 
parameter from the available 
input data, independent of the 
values of other parameters.

Regression instability
A measure for the variation of 
regression results in the 
presence of data noise. A 
regression is unstable if the 
estimates of model parameters 
significantly differ when one 
additional data point is added 
to the set of input data.

Linear independence
A set of parameters is linearly 
independent if none of its 
parameters can be written as a 
linear combination of the other 
parameters.

Normal distribution
A bell-shaped distribution that 
is fully characterized by its 
mean µ and variance σ2. It is 
usually written as N(µ,σ2).

Residual
The difference between an 
observation and the 
corresponding model 
prediction.

are linearly independent17 (that is, the effects of parameters 
on the output must be uncorrelated from each other). 
When parameter effects are correlated, fluctuations in 
the estimate of one parameter will be compensated for 
by fluctuations in the estimate of other parameters. In 
the worst case, one parameter can have arbitrary values 
that are always perfectly counteracted by one or several 
other parameters in the model.

Although the concept is straightforward, sensitivity 
analysis becomes complicated for large models that 
contain many unknown parameters. Computational 
techniques have been developed to assess the structural 
identifiability of models and to design experiments 
accordingly17,18. Also, the sensitivity coefficients depend 
on the initial guess of the values of parameters. Therefore, 
identifiability analysis must be done iteratively and sen-
sitivity coefficients must be updated using parameter 
estimates that have been obtained from regression.

In the example presented in BOX 1, all of the models 
are identifiable. For instance, in model C, sr,     = tαt

C , 
sr,     = lα l

C  and sr,     = 1/aαa
C  (for which r is plant growth rate, 

t is temperature, l is sunlight exposure and a is altitude). 
The sensitivity coefficients have non-zero magnitude 
and are independent of each other, and, therefore, model 
parameters can be determined by regression.

Regression schemes
The two most common regression schemes that are used 
for parameter estimation are maximum likelihood (ML) 
and least squares (LS) (see the regression box in FIG. 1).

In ML estimation, the likelihood of a parameter set 
is equated to the probability of obtaining the available 
experimental data from a process that is represented 
by the model tested. Therefore, in ML estimation, 
the most likely parameter values are determined as the 
parameters that maximize the probability of observing 
the experimental data19–21. The probability is defined 
as a function of the differences between the model-
predicted data and the experimentally observed data, 
and it increases as these differences decrease.

Differences between experimental and model-gener-
ated data arise from model inadequacy and measurement 
noise. In most regression schemes, measurement errors 
are considered as the sole source of differences between 
model-generated and experimental data, whereas errors 
that are due to model inadequacy are ignored and dealt 
with by post-regression diagnostics.

Assuming that errors in different measurements are 
not correlated and that they follow a normal distribution, 
the likelihood L of the parameter set α is given by the 
probability of observing the available data set r:

L(    |r) =      P(∆ri),Πα
n

i = 1

P(∆ri) =                exp(–∆ri
2/2   i

2)1
2πσ i

2
σ

                                                                             (2)

Π means product, P(Δri) is the probability of obtaining a 
residual Δri, representing the measurement error in data 
point i, and σi

2 is the variance of the distribution of Δri.

Figure 1 | Workflow of data-driven mechanistic modelling that employs regression as well as pre-regression and 
post-regression diagnostics. A number of hypotheses about the mechanism under study are used to devise a number of 
models. Structural identifiability analysis (SIA) is performed on each model, possibly leading to a modification of the 
model or to the design of new experiments that yield necessary data. Then, model parameters and their variance–
covariance matrices are determined by fitting each model to the available experimental data using a regression scheme, 
such as maximum likelihood and least squares. The goodness-of-fit (GFT) of each model is tested, and models that do not 
pass the GFT are discarded. Models that pass the GFT are compared and ranked (CRM), for example using the F-test or 
Bayesian information criterion, to determine the best-fitting model. Then the parameters of the models that pass the 
GFT are tested for significance and determinability (parameter significance and determinability test (PSDT)) to evaluate 
the best-fitting model and to reveal any shortcomings in the data and models. New hypotheses can be generated, and 
new experiments that yield data that shed light on new aspects of the process can be identified based on models that do 
not pass the GFT and PSDT.
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Robust
An estimation technique is 
said to be robust if it is 
insensitive to deviations in the 
model and the input data from 
the ideal assumptions about 
them that were used in 
formulating the estimation 
process.

Outlier
A data point with an error that 
does not belong to the 
assumed distribution of 
measurement errors.

Lorentzian distribution
A distribution that resembles 
the normal distribution, but 
with lower probability for 
values that are close to the 
mean and higher probability 
for values that are farther from 
the mean.

Linear
The models y = α1x + α2x

2 
and y = αexp(–x) are linear 
functions of the parameters α.

Nonlinear
The models y = (α1x + α2x)2 
and y = α1exp(–α2x) are 
nonlinear functions of the 
parameters α.

Closed-form solution
A solution that can be 
expressed analytically in terms 
of a finite number of 
operations (for example, 
addition, multiplication, square 
root, and so on).

Global optimization
The search for the lowest 
minimum or highest maximum 
of an objective function that 
has multiple minima or 
maxima. Such a function is 
called non-convex.

Central limit theorem
The central limit theorem 
states that any variable that is 
calculated as the sum of a large 
number of variables, even if 
they are not normally 
distributed, will be normally 
distributed.

Nonparametric methods
Statistical methods that do not 
assume an underlying 
distribution for the data being 
analysed.

Maximizing L under the assumption of normally 
distributed measurement noise (equation 2) is equivalent 
to minimizing the weighted sum of squared residuals S:

S(    |r) =            ∆ri
2                                                           (3)Σα

n

i = 1 σ i
2

1

The weight of each squared residual is the inverse of 
the variance of its distribution. Equation 3 is the famil-
iar objective function for LS estimation of the model 
parameters α.

The strategy above for finding the most likely 
parameters assumes that only the dependent variable 
measurements are subject to observational error. When 
this assumption is not a valid approximation, total LS 
regression schemes that account for error in both the 
dependent and independent variables must be used22,23. 
These regression procedures require advanced numeri-
cal treatments that are beyond the scope of this review.

Furthermore, the assumption of normally distribu-
ted residuals makes the above regression schemes not 
robust with respect to outliers21,24. Using other noise dis-
tributions (P(Δri)) to construct L, such as the Lorentzian 
distribution, leads to more robust regression21. The method 
of least median of squares, which assumes that residuals 
are normally distributed but minimizes the median of 
squared residuals instead of their sum (equation 3), is 
theoretically the most robust regression method24.

Linear versus nonlinear models. The ML and LS form-
ulations make no assumptions about the model itself. 
However, the procedures of maximizing L or minimizing 
S depend on whether the model being fitted is a linear or 
a nonlinear function of the unknown parameters.

When a model is linear, LS regression has a closed-
form solution25. For nonlinear models, regression is more 
complicated and requires global optimization of L or S. 
Innumerable strategies have been developed for global 
optimization26–28, and further efforts are required to 
ensure the development of new optimization strategies 
that can fit nonlinear models to large sets of noisy data 
— a common problem in systems biology.

Regardless of whether a model is linear or nonlinear, 
ML and LS regression generate estimates of parameter 
values α  and their variance–covariance matrix V 25,29,30. 

Elements on the diagonal of the square matrix V  rep-
resent parameter uncertainties as variances, whereas 
elements off the diagonal define the interdependencies 
between parameters as covariances. Parameter variances 
and covariances decrease as the size of the fitted data 
set increases (V ~ 1/n), although the inter dependencies 
between parameters stay unaltered unless new types of 
experimental data are employed in the regression.

Assuming that the parameter vector is normally 
distributed, α  and V  are sufficient to fully character-
ize the parameter vector distribution. The assumption 
of normality holds when the measurement errors are 
normally distributed and the model is linear or close to 
linear. It also holds asymptotically for regressions of a 
large number of observations. In this case, the central 
limit theorem20 predicts that the estimated parameters 
are normally distributed, regardless of the distribution 
of measurement errors. When neither one of these con-
ditions is satisfied, for instance if a model is highly non-
linear and the number of available data points is small, 
then the estimated parameters might deviate from the 
normal distribution. In this case, nonparametric methods, 
such as the bootstrap and the jackknife31,32, can be applied 
to infer an empirical representation of the distribution 
of the parameter vector. From this, any function of the 
parameters, such as their expectation value, variance and 
higher moments, can be calculated.

Bayesian inference. The likelihood in equation 2 can 
also be used in a third parameter estimation approach 
called Bayesian inference33–35. In this approach, a prior 
distribution P(α) of the unknown parameters is specified 
based on a priori knowledge, which is then multiplied by 
the likelihood L(α|r) to obtain a posterior estimate of the 
parameter distribution P(α|r):

P (    |r) =                                                                            (4)α L (    |r) P(  )α α
∫ L (    |r) P(  )dα α α

The denominator in equation 4 is a normalization con-
stant. From the posterior P(α|r), parameter averages 
and variance–covariance matrices, as well as any other 
function of the parameters, can be calculated. Bayesian 
inference does not make any assumptions about the 

Box 1 | Illustrative data-regression problem

Suppose a researcher is interested in testing whether plant growth rate (r) depends on temperature (t), sunlight exposure 
(l) and/or altitude (a). In this system, there is one dependent variable, r, and three independent variables, t, l and a. Data 
sets of corresponding plant growth rate, temperature, sunlight exposure and altitude are fitted with four models: 
in model A, r =    

t
A t α  (hypothesis: growth rate is proportional to temperature — α  denotes an unknown proportionality 

constant); in model B, r =    
t
B t +    

l
Bl  α α

 
(hypothesis: growth rate is proportional to temperature and light); in model C, 

r =    
t
C t +    

l
Cl +    

a
C   a α α α  (hypothesis: growth rate is proportional to temperature and light and is inversely proportional to 

altitude); and in model D, r =    
t
D t2 +    

l
Dl2 +    

a
D   a2 α α α  (hypothesis: growth rate is proportional to the square of temperature and 

light and is inversely proportional to the square of altitude).
Data sets are obtained through the following approach: an initial set of 100 measurements (data set 1) was generated 

using ri = 2.5ti + 0.2li +45/αi + εi, i = 1…100 (where εi denotes measurement error); the sets {ti} and {li} were randomly 
chosen between 1.5 and 30 and between 100 and 500, respectively, whereas {αi} was coupled to {ti} through αi ≈ 30/ti. 
Each measurement error εi was drawn from a normal distribution with a mean of zero and a standard deviation of σi. 
A second set of 100 measurements (data set 2) was generated with the relationship between {αi} and {ti} taken as αi ≈ 30/ti, 
αi ≈ 40/ti, αi ≈ 15/ti, αi ≈ 35/ti 

and αi ≈ 20/ti for each one-fifth of the data points, effectively decoupling {αi} and {ti} and 
expanding their range of values.

Results of regression and post-regression diagnostics are shown in Supplementary information S1 (table).
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Number of degrees of 
freedom
The number of degrees of 
freedom in a regression is the 
number of data points that 
were used in the regression 
minus the number of estimated 
parameters.

Null hypothesis
A statement that is tested for 
possible rejection under the 
assumption that it is true.

Alternative hypothesis
A statement that is placed in 
opposition to the null 
hypothesis.

Test-statistic
The variable calculated from 
the available data in order to 
test whether the null 
hypothesis can be rejected. Its 
distribution under the null 
hypothesis is usually known.

Chi-square distribution
A variable that is calculated as 
the sum of the squares of ν 
variables that are N(0,1)-
distributed has a Chi square 
(χ2)-distribution with ν degrees 
of freedom.

posterior P(α|r). It is therefore especially suitable for 
parameter estimation in highly nonlinear models. On 
the other hand, it requires the specification of the prior 
P(α). Because equation 4 does not have a closed form 
solution, P(α|r) is inferred by stochastic simulations, 
such as the Gibbs sampler35.

Post-regression diagnostics
Post-regression diagnostics are necessary for the eval-
uation of model validity. First, they are used to deter-
mine the best-fitting model and, therefore, the most 
likely hypothesis when several models exist. Second, 
they are used to test the significance and determinability 
of model parameters to reveal shortcomings in the mod-
els and/or the data. These are the minimum tests that 
must be done to gain trust in a model and to surmise 
that it is a reasonable representation of the process that 
has generated the available experimental data.

Model goodness-of-fit. When a model fits the data well, 
model inadequacy does not contribute to the residuals 
∆ri in equation 2 and equation 3, and the ∆ri values are 
solely due to the normally distributed measurement 
noise. Under these assumptions, the minimized sum Smin 
in equation 3 has an expected value that is equal to the 
number of degrees of freedom ν20,25.

Model goodness-of-fit (GFT in FIG. 1) can be assessed 
by testing the null hypothesis (H0 : Smin = ν) against the 
alternative hypothesis (HA : Smin ≠ ν). Under H0, the test-
statistic, T = Smin is chi-square distributed with ν degrees of 
freedom20,25. If the p-value of T is smaller than a certain 
significance value, then H0 is rejected.

Rejecting H0 with Smin > ν
 
implies that the model is 

not suitable to describe the data, and the residuals are not 
only due to measurement noise but also reflect the 
inadequacy of the model (FIG. 2a). It can also mean that 

some a priori variances of the measurement error have 
been underestimated. Rejecting H0 with Smin < ν

 
indicates 

that the measurement-error variances have been over-
estimated. The underestimation and overestimation of 
measurement errors might skew model parameters, as 
it might change the relative weights of observations, and 
must be mended25.

In the example presented in BOX 1, only models B and 
C are suitable to describe data set 1 (p-value = 0.42 and 
0.45, respectively). Model A is insufficient (p-value = 0), 
as it assumes dependence on temperature only, whereas 
model D has an incorrect form (p-value = 0.0004) 
 — instead of a linear relationship, model D postulates a 
quadratic relationship between growth rate, temperature, 
light exposure and altitude.

The most suitable model. As models are approximations 
of reality, it is likely that more than one model fits the data 
to an acceptable degree. Generally, models with a larger 
number of parameters are more flexible and fit the data 
better than models with a smaller number of parameters. 
However, the degree of interdependency between para-
meters increases as the number of parameters in a model 
increases. Therefore, the guiding principle in choosing 
the most suitable model is that a simpler and more par-
simonious model is preferred over a complicated one if 
they both fit the data to the same degree (FIG. 2a).

The F-test (compare and rank models (CRM) in 
FIG. 1) can be used to check whether the fit of a model 
with extra parameters is significantly better than the fit 
of another model with a smaller number of parameters. 
It tests H0 against HA:

H0:       =                                                                           (5) 
Smin

(2)

v (2)

Smin
(1)

v (1)

 

HA:       <                                                                           (6)
Smin

(2)

v (2)

Smin
(1)

v (1)

The superscripts (1) and (2) indicate the model with a 
smaller and a larger number of parameters, respectively. 
The test-statistic is: 

T =                                                                                    (7)
Smin

(2)

v (2)

Smin
(1)

v (1)

T follows an F-distribution with ν(1) and ν(2) degrees of 
freedom25. Rejecting H0 indicates that model 2 fits the 
data significantly better than model 1, which justifies 
the introduction of extra parameters to fit the data. The 
sensitivity of the F-test decreases with increasing number 
of degrees of freedom.

A method that is more appropriate for comparing and 
ranking models that are fitted to large data sets (CRM in 
FIG. 1) is the Bayesian information criterion (BIC). This 
method assigns a ‘score’ (also called BIC) to each model 
based on its likelihood L, the number m of estimated 
parameters in it and the number n of fitted data points36. 
The BIC is given by:

BIC(    |r) = –2lnL(α|r) + mlnn                                     (8)α
In the case of normally distributed measurements, 
–2lnL = Smin. The BIC decreases as the model likelihood 
increases, and increases as the number of parameters 

Figure 2 | Diagrams of post-regression diagnostics. a | The model goodness-of-fit test 
(GFT) identifies models that fit the data well, such as the second-order polynomial 
(green) and third-order polynomial (orange) curves, and models that are far off from the 
data, such as the first-order polynomial (red line). The F-test and Bayesian information 
criterion can then be used to decide which model is the most suitable among those that 
pass the GFT. The green and orange curves fit the data equally well; therefore the model 
with a smaller number of parameters (the green curve) is the most suitable model. 
b | When the available data spans only a limited sub-region of the space that is needed 
to uniquely determine model parameters, multiple models can fit the data equally well, 
but then they behave completely differently outside the region that is used for fitting 
(see all three lines). This lack of model uniqueness can be detected by testing parameter 
determinability and significance.
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P-value
The probability of obtaining a 
test-statistic at least as 
extreme as the one observed, 
assuming that the null 
hypothesis is true. It is 
effectively the probability of 
wrongly rejecting the null 
hypothesis when it is actually 
true.

Significance value
The value below which a 
p-value supports rejecting the 
null hypothesis.

F-distribution
A variable that is calculated as 
the ratio of two Chi-
square-distributed variables 
divided by their degrees of 
freedom ν1 and ν2, has an 
F-distribution with ν1 and ν2 
degrees of freedom.

in a model increases. Among competing models, the 
model that minimizes the BIC is the most suitable to 
describe the available data. Because the first term in the 
BIC grows linearly with n, whereas the second term is 
proportional to ln(n), the penalty for having too many 
parameters is diminished as the data set gets larger.

Comparing the fits of models B and C to data set 1 
(BOX 1) using the F-test shows that the use of an extra 
parameter in model C (dependence on altitude) is not 
justified (p-value = 0.52). In agreement with this find-
ing, model B has the minimum BIC (Supplementary 
information S1 (table)). Therefore, in our example, both 
model-selection criteria indicate that the rate of growth 
depends only on temperature and light exposure.

Parameter determinability. After identifying the most 
suitable model, it must be confirmed that the available 
data uniquely determine the value of each para meter 
(parameter significance and determinability test 
(PSDT) in FIG. 1). If a model is structurally identifiable 
yet some of its parameters turn out to be undetermina-
ble, this indicates that there are hidden dependencies 
within the available data. If structural identifiability 

analysis has not been performed on a model, its para-
meters might be undeterminable due to the structure 
of the model.

The simplest quantity that can be used to test para-
meter determinability is the cross-correlation between 
parameters. For two parameters i and j, cross-correlation 
is defined as:

κ ij =                                                                                   (9)
Vii Vjj

Vij

V  is the variance–covariance matrix of the parameter esti-
mates. The cross-correlation is normalized between –1 
and +1; 0 indicates no dependency between para meters, 
whereas ±1 indicates complete dependency. A large 
cross-correlation between two parameter estimates (for 
example, |κ| > 0.95) indicates that the two parameters are 
weakly determinable because of their strong influence 
on each other. Like the lack of structural identifiability, 
weak para meter determinability can cause regression 
instability.

Another approach for assessing the determinability 
of model parameters is by measuring the contribution of 
each parameter to the trace of the variance–covariance 
matrix37. Parameters with a high contribution are weakly 
determinable.

Determinability analysis can also be performed on 
less optimal models to elucidate hidden dependencies 
between variables. The conclusions from this analysis can 
suggest the design of new experiments that might yield 
more complete data and new models that might better 
capture the system behaviour.

In our illustrative example (BOX 1), the parameters 
that correspond to temperature and altitude in the fit 
of model C to data set 1 exhibit large cross-correlation 
(κ = –0.9998) and therefore are weakly determinable. 
Because these two parameters are identifiable according to 
the pre-regression diagnostics, this weak determin ability 
must follow from the strong, yet hidden, coupling between 
temperature and altitude in the available data. In data set 1, 
the relationship temperature = constant/altitude (BOX 1) 
was assumed. By contrast, there is less coupling between 
temperature and altitude in data set 2, in which the range 
of measurements has been expanded (BOX 1). This weaker 
coupling allows the extraction of the individual contribu-
tions of temperature and altitude to the growth rate. The 
best-fitting model for data set 2 is model C, without any 
inappropriately strong correlations between its parameters 
(κ = –0.4 between temperature and altitude). The strong 
dependency between temperature and altitude in data set 1 
is the reason that the fit of model C to that data set is not 
significantly better than the fit of model B.

Parameter significance. Another important issue to 
consider during the evaluation of a model is whether 
the estimated parameters are significantly different from 
zero. A difference from zero indicates a significant rela-
tionship between the dependent and independent vari-
ables (PSDT in FIG. 1). Parameters that are in principle 
identifiable can turn out to be insignificant due to the 
large uncertainty in the available data compared to 
the sensitivity coefficient in equation 1.

Figure 3 | Modelling of probabilistic processes. a | Data from probabilistic processes, 
such as microtubule (MT) length trajectories, are stochastic and cannot be compared 
directly point-by-point. The data must be analysed to extract its characteristics that can 
then be compared to decide whether MT dynamics in wild-type are different from those 
in a mutant (bim1Δ), and whether the model-generated dynamics are equivalent to those 
measured experimentally. b | Flowchart for the estimation of parameters in probabilistic 
models. Experimental and model-generated data are analysed to obtain intermediate 
statistics that characterize them. These statistics are then compared, and model 
parameters are updated until the statistics of model-generated data match those of 
experimental data. Identifying the appropriate statistics and the optimal strategy for 
matching the descriptors of model-generated and experimental data are major 
challenges within this framework.
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Trace
Sum of the diagonal elements 
of a matrix.

Student’s t-distribution
A distribution that is similar to 
N(0,1), except that it has 
heavier tails. It is a function of 
the number of degrees of 
freedom ν, and converges to 
N(0,1) as ν gets larger.

Probabilistic process
A process in which the current 
state of a system does not 
uniquely determine its next 
state, but defines a set of 
possible states with their 
transition probabilities.

Markov chain
A chain of events in which what 
happens at time point t+1 
only depends on what has 
happened at time point t, and 
not on any previous time 
points.

Due to the interdependence between parameters, 
reflected by non-zero cross-correlation coefficients, sig-
nificance cannot be assessed for each parameter individ-
ually, but only for groups of interdependent parameters. 
However, the grouping of interdependent parameters in 
large models is ambiguous, rendering the direct testing 
of parameter significance a non-trivial task.

The simplest approach to test the significance of 
interdependent parameters is to transform them into a 
new parameter set (orthogonal set) α 1...α m with zero 
covariances between the components. This orthogo-
nalization transformation uses a technique called 
eigenvalue decomposition38. The components of this set 
can be checked for significance, independently of each 
other, by testing the null hypothesis (H0 :    i = 0)α  against 
the alternative hypothesis (HA:    i ≠ 0)α , for i = 1…m. 
The test-statistic T =      α i σα i

, where σα i
 is the standard 

deviation of α i, follows a Student’s t-distribution with 
ν degrees of freedom. Rejecting H0 implies that α i is 
significantly different from zero. Components that are 
found to be insignificant are set to zero, and then the 
original parameter set is recovered by inverting 
the orthogonalization transformation, now with all 
insignificant values eliminated.

Testing the significance of the parameters in models 
B and C that are estimated by fitting data set 1 shows that 
the parameters of model C have insignificant values 
that get eliminated (before test: αt = 6.55, αl = 0.21, αa = –68; 
after test: αt = 4.33, αl = 0.21, αa = 0.14). Both models 
fitted to data set 2, on the other hand, do not have 
insignificant values.

Modelling of probabilistic processes
Many biological processes are probabilistic, such as 
gene expression39,40, synaptic transmission41,42, chemi-
cal reactions with low copy number of molecules43,44 
and microtubule dynamic instability 45 (FIG. 3a). In the 
case of probabilistic models, the formulation that was 

discussed above for estimating parameters by mini-
mizing the differences between individual experi-
mental and model-predicted data points is no longer 
applicable. Instead, parameters in probabilistic models 
can be estimated through indirect inference (FIG. 3b), 
a method that was developed mostly in econometrics 
for the estimation of parameters in stochastic dynamic 
models46–49.

In the method of indirect inference, first an inter-
mediate model is fitted to the simulated and experimental 
data to yield intermediate statistics that characterize 
the data. Then the unknown model parameters in the 
stochastic simulation are varied in order to minimize 
the differences between the intermediate statistics of 
simulated and experimental data. Both steps can be 
achieved through ML or LS regression, and the diagnos-
tics discussed above can be used to evaluate regression 
quality and model goodness-of-fit.

The match between model-generated and experi-
mental data is limited to information captured by the 
intermediate statistics. Characteristics of the experi-
mental data that are not captured by the intermediate 
statistics will not be reflected in the model, whereas 
model-generated data might have characteristics that 
bear no resemblance to reality. Therefore, the reliable 
estimation of model parameters, and consequently the 
proper choice of models, is heavily dependent on 
the use of unique and complete intermediate statistics 
that fully characterize the experimental and model-
generated data (see BOX 2 for an example of stochastic 
data characterization).

To circumvent the use of intermediate statistics, 
alternative methods based on Bayesian inference have 
been developed50–54. Within the Bayesian approach, 
the process underlying the observed data is assumed 
to be a Markov chain, from which the probability of 
obtaining the observed data is directly constructed. 
This likelihood is then multiplied by the prior param-
eter distribution to obtain the posterior parameter 
distribution (equation 4). The posterior distribution 
can then be used to calculate the expectation value 
and higher moments of model parameters, as in the 
deterministic case.

Both of the approaches that were introduced above are 
at the forefront of research on how to link probabilistic 
models to stochastic data. As the sensitivity of measure-
ment increases and data on single-molecule behaviour 
become more available, devising reliable methods 
for estimating parameters in probabilistic models 
will become increasingly important for achieving 
the ultimate goal of systems biology — understanding 
cellular behaviour as a result of the underlying stochastic 
molecular interactions. 

Conclusions
Modelling is an essential tool in systems biology. 
However, given the complexity of biological systems and 
the scarcity and incomplete nature of data, modelling 
can be misleading. In this review, we have presented a 
minimal set of strategies for regression as well as pre-
regression and post-regression tools that should be 

Box 2 | Microtubule dynamics: an example of probabilistic modelling

The history of modelling microtubule (MT) dynamic instability over the past two 
decades nicely shows the importance of choosing appropriate intermediate statistics 
(descriptive parameters) for the characterization of a probabilistic process. Generally, 
MT length trajectories have been characterized by their average growth and 
shrinkage speeds and their average times spent in growth and in shrinkage45,55,56. 
However, this set of statistics cannot distinguish between MT growth with memory 
(the probability of switching from growth to shrinkage depends on the time spent in 
growth) and without memory (the probability of switching is independent of the time 
spent in growth), which are characterized by different growth-time distributions. To 
distinguish between these two modes of dynamic instability, an extra statistic, the 
variance of growth times, has been used57. Furthermore, growth and shrinkage speeds 
have inherent variability58. Therefore, if a mutation changes the growth-speed 
distribution without affecting the average growth speed, for example, the effect of 
that mutation will go unnoticed unless the set of statistics is expanded from only 
averages to overall distributions59. Even speed and time distributions can fail to 
detect changes in MT dynamics, because these statistics do not fully capture the 
coupling between MT states over time60. To capture these important characteristics, 
we have used stochastic time-series analysis tools that explicitly account for time 
coupling60. With each extra statistic, more detailed information about MT-length 
trajectories is extracted, and so the models that are devised better reflect the 
mechanisms that underlie our observations.
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employed to evaluate and diagnose postulated models 
from a statistical perspective. The ultimate validation of 
a model that passes these tests, however, will stem from 
its power to predict system behaviour in response to 
perturbations and conditions that are not included in 
the data that are used for parameter estimation.

Unfortunately, in systems biology, we are still far from 
having these basic quality controls established as the 
minimum requirements for the publication of a model. 
As a community, we should jointly set out to elevating 
our rigour in explaining experimental observations with 
numerical approaches.
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