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Structured Pathways

• Lots of cancer research/
genes/data

• Subsequently, we know a 
lot about pathways active 
in cancer

• Can we use this 
structured knowledge?



Modeling clinical 
samples
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Use in clinical samples
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Outline

1. Get pathways (ugly, 50%-95% done)

2. Convert to graphical model

3. Add evidence from patient

4. Infer the value of hidden variables
(i.e. Apoptosis, Chemotaxis)

5. Solve cancer (finally)



• Proteins

• Complexes

• Abstract procceses

• Reactions/
modifications/
translocations

• Activation vs. 
participants



BioPAX

• Based on OWL
Web Ontology Lang.

• Based on RDF
Resource Desc. Format

• Not human-readable

• Must use tools!

• I love to complain 
about it



• Three levels (versions), people only use 
level 2 (I think)

• Defines “things” which have various 
properties, including a “class”

• Each “thing” is a URI, which looks like a 
URL

BioPAX



RDF/OWL/BioPAX Tools

• Protege: from Stanford, designed more 
for creating a BioPAX more than looking at 
“data” in that “format”

• SPARQL/roqet: sort of like SQL for 
RDF. Don’t use XML tools, you may miss 
things due to variations in serializations.



Caveat
• All this dense typing and 

formating is extremely 
expressive

• However, the amount of 
expression impedes 
programmatic 
understanding

• Test, test, test

This shows the “transcription” of a 
complex.  The meaning is obvious to a 
human, but befuddling to my naive scripts.



PREFIX bp: <http://www.biopax.org/release/biopax-level2.owl#>

SELECT
  ?goname
  ?entity
  ?activation
WHERE {
  ?mod bp:CONTROL-TYPE ?activation .
  ?mod bp:NAME ?goname .
  ?mod bp:CONTROLLED ?reaction .
  ?reaction bp:RIGHT ?pep .
  ?pep bp:PHYSICAL-ENTITY ?entity
}

Example query: find 
abstract processes that 

are parents

http://www.biopax.org/release/biopax-level2.owl#
http://www.biopax.org/release/biopax-level2.owl#


• Started by finding the proper queries to 
extract interactions, names, parts of 
complexes...

• Want a simple tab-delimited format:

Parsing

abstract          metaphase
abstract          mitosis
complex           AurC/AurB/INCENP
protein           H3F3A
protein           AuroraB
protein           AuroraC
protein           INCENP
AurC/AurB/INCENP  H3F3A                -a>
mitosis           H3F3A                -ap> 
metaphase         AurC/AurB/INCENP     -ap>
AuroraB           AurC/AurB/INCENP     component>
INCENP            AurC/AurB/INCENP     component>
AuroraC           AurC/AurB/INCENP     component>

Entity Definitions

Entity Interactions



abstract          metaphase
abstract          mitosis
complex           AurC/AurB/INCENP
protein           H3F3A
protein           AuroraB
protein           AuroraC
protein           INCENP
AurC/AurB/INCENP  H3F3A                -a>
mitosis           H3F3A                -ap> 
metaphase         AurC/AurB/INCENP     -ap>
AuroraB           AurC/AurB/INCENP     component>
INCENP            AurC/AurB/INCENP     component>
AuroraC           AurC/AurB/INCENP     component>



My hopeful monster

• Makefile converted 
to executable script

• A bit experimental



$MAPDIR/Data/Pathways

• Early, molten stage, but useful

• Human/NCIPID has NCI pathways

• Human/KEGG has early KEGG attempts



Pathway stats
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Outline

1. Get pathways (ugly, 50%-95% done)

2. Convert to graphical model

3. Add evidence from patient

4. Infer the value of hidden variables
(i.e. Apoptosis, Chemotaxis)

5. Solve cancer (finally)
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Aurora C Factor Graph
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abstract          mitosis
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protein           AuroraB
protein           AuroraC
protein           INCENP
AurC/AurB/INCENP  H3F3A                -a>
mitosis           H3F3A                -ap> 
metaphase         AurC/AurB/INCENP     -ap>
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Aurora C Evidence

AuroraB    genome    0.87082
AuroraB    mRNA      0.37673
AuroraC    genome    0.170729
AuroraC    mRNA      0.045578
INCENP     genome    -0.082277
INCENP     mRNA      -0.060272
H3F3A      genome    -0.411328

metaphase

AurC/AurB/INCENP

mitosis

H3F3Ag H3F3Am H3F3Ap H3F3Aa

AuroraBg AuroraBm AuroraBp AuroraBa

AuroraCg AuroraCm AuroraCp AuroraCa

INCENPg INCENPm INCENPp INCENPa

• Data points are signed, log p-values

• Right now, I discretize into up/down/
same at 0.05 level

• Therefore, many patients look 
“identical” on hidden variables



Aurora C Inference

• using the package libDAI, which implements 
many approximate inference algorithms 
(and exact)

• Using exact at the moment

• 128 patients, 132 pathways ~ 2 hours



Prelim. Pathway results
• 2 data sets

• Glioblastoma        224 samples    

• Ovarian Cancer    128 samples

• Still working out kinks in pipeline

• Not satisfied with data treatment

intriguing relationship between the hypermutator phenotype and
MGMT methylation status emerged in the treated samples.
Specifically,MGMTmethylation was associated with a profound shift
in the nucleotide substitution spectrum of treated glioblastomas
(Fig. 4a). Among the 13 treated samples withoutMGMTmethylation,
29% (29out of 99) of the validated somaticmutations occurred asGNC
toANT transitions inCpGdinucleotides (characteristic of spontaneous
deamination of methylated cytosines), and a comparable 23% (23 out
of 99) of allmutations occurred asGNC toANT transitions in non-CpG
dinucleotides. In contrast, in the six treated samples with MGMT
methylation, 81% of all mutations (146 out of 181) turned out to be
of the GNC to ANT transition type in non-CpG dinucleotides, whereas
only 4% (8 out of 181) of all mutations were GNC to ANT transition
mutations within CpGs. That pattern is consistent with a failure to
repair alkylated guanine residues caused by treatment. In other words,
MGMTmethylation shifted themutation spectrumof treated samples
to a preponderance of GNC to ANT transition at non-CpG sites.

Notably, the mutational spectra in the MMR genes themselves
reflected MGMT methylation status and treatment consequences.
All seven mutations in MMR genes found in sixMGMTmethylated,
hypermutated (treated) tumours occurred as GNC to ANT mutations
at non-CpG sites (Fig. 4b and Supplementary Table 6), whereas
neither MMR mutation in non-methylated, hypermutated tumours
was of this characteristic. Hence, these data show that MMR defi-
ciency andMGMTmethylation together, in the context of treatment,
exert a powerful influence on the overall frequency and pattern of
somatic point mutations in glioblastoma tumours, an observation of
potential clinical importance.

Integrative analyses define glioblastoma core pathways

To begin to construct an integrated view of common genetic altera-
tions in the glioblastoma genome,wemapped the unequivocal genetic

alterations—validated somatic nucleotide substitutions, homozygous
deletions and focal amplifications—onto major pathways implicated
in glioblastoma1. That analysis identified a highly interconnected net-
work of aberrations (Supplementary Figs 7 and 8), including three
major pathways: RTK signalling, and the p53 and RB tumour sup-
pressor pathways (Fig. 5).

By copy number data alone, 66%, 70% and 59%of the 206 samples
harboured somatic alterations in core components of the RB, TP53
and RTK pathways, respectively (Supplementary Table 8). In the 91
samples for which there was also sequencing data, the frequencies of
somatic alterations increased to 87%, 78% and 88%, respectively
(Supplementary Table 9). There was a statistical tendency towards
mutual exclusivity of alterations of components within each pathway
(P-values of 9.33 10210, 2.53 10213 and 0.022, respectively, for the
p53, RB and RTK pathways; Supplementary Table 10), consistent
with the thesis that deregulation of one component in the pathway
relieves the selective pressure for additional ones. However, we
observed a greater than random chance (one-tailed, P5 0.0018) that
a given sample harbours at least one aberrant gene from each of the
three pathways (Supplementary Table 10). In fact, 74% harboured
aberrations in all three pathways, a pattern suggesting that deregula-
tion of the three pathways is a core requirement for glioblastoma
pathogenesis.

As well as frequent deletions and mutations of the PTEN lipid
phosphatase tumour suppressor gene, 86% of the glioblastoma sam-
ples harboured at least one genetic event in the core RTK/PI3K path-
way (Fig. 5a). In addition to EGFR and ERBB2, PDGFRA (13%) and
MET (4%) showed frequent aberrations (Supplementary Table 9). A
total of 10 of the 91 sequenced samples have amplifications or point
mutations in at least 2 of the 4 RTKs catalogued (EGFR, ERBB2,
PDGFRA and MET; Supplementary Table 9), suggesting that geno-
mic activation can be a mechanism for co-activated RTKs44.

a

b

EGFR ERBB2 PDGFRA MET

RASNF1

AKT

FOXO

PTEN

MDM4

TP53

MDM2

RB1

CDK4 CDK6CCND2

RTK/RAS/PI(3)K
signalling altered

in 88%

p53
signalling
altered
in 87%

RB
signalling
altered
in 78%

CDKN2CCDKN2BCDKN2A
(P16/INK4A)

Homozygous deletion,
mutation in 52%

Homozygous
deletion in 47%

Homozygous
deletion in 2%

Amplification
in 2%

Amplification
in 1%

Amplification
in 18%

G1/S progression

Activated oncogenes

ApoptosisSenescence

CDKN2A
(ARF)

Mutation, homozygous
deletion in 35%

Homozygous deletion,
mutation in 49%

Amplification in 7%

Amplification in 14%

Homozygous deletion,
mutation in 11%

Amplification in 2%

Mutation in 1%

Mutation in 2% Mutation in 15%

Mutation, homozygous
deletion in 36%

Amplification
in 4%

Amplification
in 13%

Mutation
in 8%

Mutation, amplification
in 45%

PI(3)K
Mutation, homozygous

deletion in 18%

Proliferation
survival

translation

c

Figure 5 | Frequent genetic alterations in three critical signalling
pathways. a–c, Primary sequence alterations and significant copy number
changes for components of the RTK/RAS/PI(3)K (a), p53 (b) and RB
(c) signalling pathways are shown. Red indicates activating genetic
alterations, with frequently altered genes showing deeper shades of red.
Conversely, blue indicates inactivating alterations, with darker shades

corresponding to a higher percentage of alteration. For each altered
component of a particular pathway, the nature of the alteration and the
percentage of tumours affected are indicated. Boxes contain the final
percentages of glioblastomas with alterations in at least one known
component gene of the designated pathway.
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