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Recent studies have found that overexpression of the High-mobility group box-1 (HMGB1) pro-
tein, in conjunction with its receptors for advanced glycation end products (RAGEs) and toll-like
receptors (TLRs), is associated with proliferation in cancers of various types including breast and
pancreatic. We have developed a rule-based model of crosstalk between HMGB1 signaling and other
key cancer signal pathways. The model has been simulated using both ordinary differential equations
(ODEs) and discrete stochastic simulation. Our simulations show that, if HMGB1 is overexpressed,
then the oncoproteins CyclinD/E, which regulate cell proliferation, are activated or overexpressed,
while tumor suppressor proteins which regulate cell apoptosis (programmed cell death), such as p53,
are repressed. The discrete, stochastic simulations show that p53 and MDM2 oscillations continue
even after 10 hours. This property is not exhibited by the deterministic ODEs simulation. Moreover,
the models also predict that mutation of RAS, ARF and P21’s could influence the cancer cell’s fate
– apoptosis or survival – through the crosstalk of different pathways. Finally, we apply an auto-
mated verification technique, Statistical Model Checking, to validate formally interesting temporal
properties of our model.
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I. INTRODUCTION

The cell cycle is strictly regulated and controlled by a complex network of signaling pathways1, com-
prised of hundreds of proteins. If some important proteins are mutated or there are defects in the signaling
mechanisms, the normal cell growth regulation will break down, possibly leading to the occurrence of can-
cer in the future. Moreover, a number of extracellular proteins could bind to their receptors and activate
signaling pathways to communicate with the nucleus.

The high-mobility group box-1 (HMGB1) protein is a DNA-binding nuclear protein, released actively
in response to cytokine stimulation, or passively during cell death, and it is present in almost all eukaryotic
cells2–5. HMGB1 can activate a series of signaling components, including mitogen-activated protein kinases
(MAPKs) and AKT, which play an important role in tumor growth and inflammation, through binding to
different surface receptors, such as RAGE and TLR2/4. Some studies have shown that elevated expression
of HMGB1 occurs in many tumors6–9 and accelerates cell-cycle progression. Recent in vitro studies with
pancreatic cancer cells10 observed that the targeted knockout or inhibition of HMGB1 and RAGE could
increase apoptosis and suppress pancreatic cancer cell growth. This phenomenon has been also observed
with lung cancer and other types of cancer cells7,11.

To the best of the authors’ knowledge, no computational model has been proposed to investigate the
importance of HMGB1 in tumor proliferation. In this work, we construct a simple model of HMGB1 signal
transduction to investigate tumorigenesis, on the basis of known signaling pathways studies12–17. Little is
known about HMGB1 at the mechanistic level, so our model can provide some insights into the study of
HMGB1’s roles in tumor proliferation. A series of simulation experiments was conducted to investigate the
properties of the HMGB1 pathway. Furthermore, we used Statistical Model Checking to validate formally
our pathway model against known experimental results.
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FIG. 1: Schematic view of HMGB1 signal transduction. Blue nodes represent tumor suppressor proteins; red nodes
represents oncoproteins/lipids. Solid lines with arrows denote protein transcription, degradation or changes of molec-
ular species; dashed lines with arrows denote activation processes.

II. BIOLOGICAL PROBLEM AND MODEL FORMULATION

A. Biological Problem

HMGB1 can activate a series of signaling pathways, with many proteins involved in signal transductions.
We seek to understand which signaling pathways are fundamental to describe HMGB1 signal transduction.
Moreover, we aim at identifying the pathways and mechanisms that explain recent results linking overex-
pression of HMGB1 with decrease of apoptosis (and increased cancer cell survival).

Apoptosis and cell proliferation are regulated respectively by the proteins p53 and CyclinE, acting in two
different signaling pathways. The protein p53 is one of the most important tumor suppressor proteins: its
activation can lead to the cell cycle arrest, DNA repair or apoptosis. Mutations of p53 occur at a frequency of
50% or higher in many different cancer types18. CyclinE is a cell cycle regulatory protein which regulates
the G1-S phase transition during cell proliferation. Cancer cells often exhibit high expression levels of
CyclinE and aberrant CyclinE activity19. Many studies have found evidence of crosstalk between the two
signaling pathways involving p53 and CyclinE20. The crosstalk is regulated by some tumor suppressor
proteins including ARF, P21 and FBXW7, which are also frequently mutated in many cancers. How do
these proteins and their mutations change the cell’s fate – apoptosis or survival – when HMGB1 signaling
transduction is activated? We built a simple model to answer these questions.

B. Structure of the Model

The HMGB1 signaling pathway model is illustrated in Fig.1. It includes 31 molecular species (5 tumor
suppressor proteins), 59 chemical reactions, and three different signaling pathways activated by HMGB1:
the RAS-ERK, Rb-E2F and p53-MDM2 pathways. Since the interaction between HMGB1 and its receptors
TLR and RAGE is not clear at the mechanistic level, RAGE is used to represent all the receptors in our
model, in order to reduce the number of unknown parameters. We now briefly discuss the three pathways
and their crosstalk. We denote activation (or promotion) by →, while inhibition (or repression) is denoted
by a.
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p53-MDM2 pathway. It is regulated by a negative feedback loop22: PI3K → PIP3 → AKT →
MDM2 a p53 → MDM2, and a positive feedback loop: p53 → PTEN a PIP3 → AKT →
MDM2 a p53. The protein PI3K is activated by the toll-like receptors (TLR2/4) within several min-
utes upon TLR2/4 activation by HMGB123. In turn, PI3K phosphorylates the phosphatidylinositol 4,5-
bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), leading to phosphorylation of
AKT. The unphosphorylated oncoprotein MDM2, which is one of p53’s transcription targets24, resides in
the cytoplasm, and cannot enter the nucleus until it is phosphorylated by activated AKT. The phosphorylated
MDM2 translocates into the nucleus to bind with p53, inhibiting p53’s transcription activity, initializing p53
polyubiquitination25, which targets it for degradation. Also, p53 can regulate the transcription of PTEN26, a
tumor suppressor protein, which can hydrolyze PIP3 to PIP2, thereby inhibiting the activation of AKT and
MDM2.

RAS-ERK pathway: RAS → RAF → MEK → ERK → CyclinD. Activation of RAGE by
HMGB1 leads to RAS activation, which in turn activates its effector protein RAF. Activated RAF will
phosphorylate the MEK proteins (mitogen-activated protein kinase kinases (MAPKK)), leading to the phos-
phorylation of ERK1/2 (also called MAPKs). Activated ERK can phosphorylate some transcription factors
which activate the expression of the regulatory protein CyclinD and Myc, enabling progression of the cell
cycle through the G1 phase. K-RAS, a member of the RAS protein family, is found to be mutated in over
90% of pancreatic cancers32.

Rb-E2F pathway: CyclinD a Rb a E2F → CyclinE a Rb. The Rb-E2F pathway regulates the
G1-S phase transition in the cell cycle during cell proliferation. E2F is a transcription factor which can
activate the transcription of many proteins involved in DNA replication and cell-cycle progression27. In
quiescent cells, E2F is bound by unphosphorylated Rb – a tumor suppressor protein – forming an Rb-E2F
complex which inhibits E2F’s transcription activity. E2F will be activated and released when its inhibitor
Rb is phosphorylated by some oncoproteins (CyclinD and Myc in Fig.1), leading to the transcription of
CyclinE and Cyclin-dependent protein kinases (CDK2) which promotes cell-cycle progression. CyclinE, in
turn, continues to inhibit the activity of Rb, leading to a forward positive feedback loop28–30. Fig.1 shows
that the activity of CyclinD-CDK4/6(only CyclinD is shown in Fig.1) is inhibited by the tumor suppressor
protein INK4A, which is inactivated in up to 90% pancreatic cancers31.

Crosstalk. The three signaling pathways in HMGB1 signal transduction are not independent, the
crosstalk between these pathways can influence the cell’s fate. As shown in Fig.1, RAS can also acti-
vate the PI3K-AKT signaling pathway; the tumor suppressor ARF protein, activated by the overexpressed
oncoprotein E2F, can bind to MDM2 to promote its degradation and stabilize p53’s expression level, leading
to apoptosis. Moreover, experiments18 have demonstrated that the p53-dependent tumor suppressor proteins
p21 and FBXW7 can restrain the activity of CyclinD/CDK4/6 and CyclinE/CDK2 (only p21 is shown in
Fig.1 to represent both p21 and FBXW7’s contribution). Mutations of RAS, ARF, P21 and FBXW7 have
been found in many cancers31–33. Our model and simulation will investigate how these mutations affect the
cell’s fate.

C. Simulation Models

In Fig.1 we give a schematic view of the signaling pathways and proteins involved in our model of the
HMGB1 signal transduction. In the model, all substrates are expressed in the number of molecules; protein
with a subscript “a” or “p” correspond respectively to active or phosphorylated form of the protein. For
example,

• RAGE (RAGEa) - inactive(active) form of HMGB1’s receptor

• MDM2 (MDM2p) - unphosphorylated(phosphorylated) MDM2.

We denote by mdm2 the mRNA transcript of MDM2. We assume that the total number of active and
inactive forms of RAGE, PI3K, PIP, AKT, RAS, RAF, MEK, ERK molecules is constant. For example,
AKT + AKTp = AKTtot, PIP2 + PIP3 = PIPtot. We sometimes use CD to stand for CyclinD-CDK4/6
complex, CE for CyclinE, and RE for Rb-E2F complex.
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TABLE I: Initial values for the model

Proteins RAGE PI3K PIP2 AKT MDM2 MDM2p P53 RAS RAF MEK ERK RE

# of Mol. 103 105 105 105 104 2× 104 2× 104 104 104 104 104 105
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FIG. 2: Number of p53, MDM2p (A, C), Cyclin D/E (B, D) molecules versus time for baseline simulations with
SSA(A-B) and ODE(C-D) models.

The p53-MDM2, Rb-E2F, and RAS-ERK pathways have been investigated individually by many re-
searchers using deterministic ODE methods12–15,27. We formulated a reaction model corresponding to the
reactions illustrated in Fig.1 in the form of rules specified in the BioNetGen language34. We use Hill
functions to describe the rate laws governing the transcription of some proteins, including PTEN, MDM2,
CyclinD (CD), Myc, E2F and CyclinE (CE), and use mass action rules for other reactions. We use both
ODEs and Gillespie’s stochastic simulation algorithm (SSA)35 to simulate the model within BioNetGen34.
Stochastic simulation is important because when the number of molecules involved in the reactions is small,
stochasticity and discretization effects become more prominent36–38. A list of ODEs is provided in the Ap-
pendix.

III. SIMULATION RESULTS

We have conducted a series of deterministic and stochastic simulation experiments to study the properties
of our HMGB1 signaling model. We first conducted a baseline simulation for four important proteins –
p53, MDM2p, CyclinD/E – based on ODE and stochastic simulation models. We set the initial value for the
number of HMGB1 molecules to be 103; the nonzero initial values for other proteins are given in Table I,
and the input parameters are listed in the online supplementary material55. The baseline simulations in Fig.
2A demonstrate that the expression levels of p53 and MDM2p oscillate in the stochastic model even after
10 hours, when the cell enters the S phase. However, no oscillation is observed in the ODE model (Fig.2C)
when the cell proceeds to the S phase (we recall that cells usually remain in phase G1 for about 10 hours of
the 24 total hours of the cell cycle). The stochastic simulation model is more consistent with Geva-Zatorsky
et al.’s experimental result that the oscillations of p53 and MDM2p expression levels could last more than
72 hours after γ irradiation39. Fig.2B and D show that the Cyclin E protein, which regulates the G1-S phase
transition in the cell cycle, reaches its maximum at about 10 hours, after which the cell proceeds with DNA
replication (S phase).
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How does the expression level of HMGB1 and other proteins influence the cell’s fate? We varied the
levels of HMGB1 and AKT to determine how they affect cell behavior. A number of studies have found
that HMGB1 is overexpressed in many cancers, and the overexpression of HMGB1 and its receptors can
promote cancer cell proliferation and decrease apoptosis7,8. In Fig.3 A-B, we increase the initial values of
HMGB1 from 1 to 106 and measure p53’s maximum expression level in phase G1. We then measure E2F
and CyclinD/E’s expression levels at 10 hours, which corresponds to the G1-S phase transition point. For
the stochastic simulation, the experiment is repeated 10 times per value to compute the mean and standard
errors. Fig.3(A,D) demonstrates that the increase of HMGB1 initial value will lead to the decrease of
p53’s expression level, but when the number of HMGB1 is over 105, p53 will not continue to decrease.
This is because HMGB1 can also activate and increase the expression level of its downstream protein E2F
(Fig.3(A,D)), whose overexpression will activate the transcription of the tumor suppressor protein ARF,
which can inhibit MDM2’s activity to stabilize p53’s level. However, ARF is found to be mutated in up
to 80% of pancreatic cancers31,40. Fig.3(B,E) shows that the cell cycle regulatory proteins CyclinD/E will
increase with the elevated expression of HMGB1. Fig.3(A,B,D,E) explains the experimental discovery
that the overexpression of HMGB1 decreases apoptosis and promotes DNA replication and proliferation in
cancer cell.

The protein AKT is overexpressed in many cancers41. In Fig.3(C,F), we first increase the number of
AKT molecules and fix the other proteins’ concentration, then measure p53 and MDM2p’s expression levels
at 10 hours in phase G1. Fig.3(C,F) shows that with the increase of AKT’s expression level, p53 is repressed
due to the ubiquitination initiated by the overexpressed MDM2p, which is promoted by the activated and
overexpressed AKT protein. The results in Fig.3(C,F) provide a way to inhibit tumor cell proliferation and
induce tumor cell apoptosis through the inhibition of protein phosporylation events downstream from AKT
kinases in the PI3K/AKT signaling pathway, using some AKT kinase inhibitor (such as the GSK-690693
drug42).

K-RAS is a member of the RAS protein family. K-RAS mutation and ARF loss occur in more than 80%
of pancreatic cancers31,40. The P21 and FBXW7 proteins are also frequently mutated in many cancers33.
How these mutations influence the HMGB1 signaling transduction, especially ARF and P21, plays an im-
portant role in the crosstalk between the p53 and Rb pathways. ARF is able to reroute cells with oncogenic
damage to p53-dependent fates through binding to MDM2 and targets its degradation. The p53-dependent
tumor suppressor proteins P21 and FBXW7 can inhibit CyclinD/E’s activity to prevent the proliferation of
cancer cells.

Fig.4 shows how mutation of ARF, P21 and FBXW7, and K-RAS influence tumor suppressor and cell
cycle regulatory protein’s expression levels at 10 hours. We use the MDM2 degradation rate driven by ARF,
dARF (d′7 in the ODE model), to describe ARF mutations. Also, we use Cyclin degradation rate driven by
P21, dP21 (b′6 in the ODE model), to describe P21 and FBXW7 mutations. Large dARF and dP21 values
correspond to small mutation of ARF and P21 respectively, while small dARF and dP21 correspond to large
ARF and P21 mutations in the cell.

Fig.4(A,D) show that wild-type ARF (larger dARF ), can decrease the number of MDM2p molecules
and increase p53’s expression level to initiate apoptosis even if the cell proceeds to the S phase. Moreover,
mutated ARF (smaller dARF ) could not stabilize p53’s level and prevent the proliferation of cancer cells
if HMGB1 is overexpressed. This could explain the phenomenon that ARF loss exists in over 80% of
pancreatic cancers31. Fig.4(B,E) demonstrates that CyclinD/E proteins will increase if P21 is mutated
(smaller dP21), thereby accelerating cell cycle progression.

K-RAS is mutated in most cancers, especially in pancreatic cancer32. Mutated K-RAS can not be deacti-
vated, so it will continuously activate the downstream signaling pathways which promote cell proliferation.
Fig.4(C,F) shows that with the increase of RAS deactivation rate dRAS (b1 in the ODE model), the syn-
thesis of CyclinD/E will be inhibited. The results visualized in Fig.4 provide some ways to inhibit cancer
cell proliferation through inhibition or deactivation of the signaling pathways involving RAS, Cyclin, and
Cyclin-dependent kinases (CDK). Recently, CDK and RAS inhibitor drugs43–45 have been developed to
inhibit tumor growth.
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FIG. 3: Overexpression of HMGB1(A-B) leads to the increase of oncoprotein E2F and DNA replication proteins
Cyclin D/E, decrease of p53; Overexpression of AKT(C) promote the expression level of MDM2p and inhibit p53
based on ODE(A-C) and SSA(D-F) models.

IV. MODEL CHECKING

Model Checking51,52 has emerged as one of the leading techniques for the automated verification and
analysis of hardware and software systems. Given a high-level behavior specification, a model checker
verifies whether our system (or model) satisfies it. A specification might be satisfied by many different
models. Thus, Model Checking is the process of determining whether or not a given system model satis-
fies (is a model of) a property describing desired behavior of the system. Mathematically, system models
take the form of state-transition diagrams, while some version of temporal logic is used to describe the
desired properties (specifications) of system executions. A typical property stated in temporal logic is
G(grant req → F ack), meaning that it is always (G = globally) true that a grant request eventually (F =
future) triggers an acknowledgment. One important aspect of Model Checking is that it can be performed
algorithmically - user intervention is limited to providing a system model and a property to check.

Recently, there has been growing interest in formal verification of stochastic systems, and biological
systems in particular47,50,54, by means of Model Checking techniques. The Probabilistic Model Checking
problem (PMC) is to decide whether a stochastic model satisfies a temporal logic property with a probability
greater than or equal to a certain threshold. To express temporal properties we use a logic in which the
temporal operators are equipped with bounds. For example, the property ”CyclinD will always stay below
10 in the next fifty time units” is written as G50(CyclinD < 10). We now ask whether our stochastic
system M satisfies that formula with a probability greater or equal to a fixed threshold (say 0.9), and we
write M |= Pr>0.9[G50(CyclinD < 10)]. In the next section we formally define the temporal logic used
in this work, the Bounded Linear Temporal Logic.
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FIG. 4: Mutations of ARF, P21 and RAS affect the cell’s fate based on ODE(A-C) and SSA(D-F) models.

A. Bounded Linear Temporal Logic (BLTL)

Let SV be a finite set of real-valued variables, an atomic proposition AP is a boolean predicate of the
form e1 ∼ e2, where e1 and e2 are arithmethic expressions over variables in SV , and ∼ is either ≥, ≤, or
=. A BLTL property is built over atomic propositions using Boolean connectives and bounded temporal
operators. The syntax of the logic is the following:

φ ::= AP | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ1 | φ1Utφ2.

The bounded until operator φ1Utφ2 requires that, within time t, φ2 will be true and φ1 will hold until then.
Bounded versions of the F and G operators can be easily defined: Ftφ = true Utφ requires φ to hold true
within time t; Gtφ = ¬Ft¬φ requires φ to hold true up to time t.

The semantics of BLTL is defined with respect to traces (or executions) of a system. In our case, a
trace will be the output of a simulation of a BioNetGen stochastic model. Formally, a trace is a sequence of
time-stamped state transitions of the form σ = (s0, t0), (s1, t1), ..., which denotes that the system moved to
state si+1 after having sojourned for time ti in state si. The fact that a trace σ satisfies the BLTL property
φ is written σ |= φ. We denote the trace suffix starting at step k by σk. We have the following semantics of
BLTL:

• σk |= AP if and only if AP holds true in state sk;

• σk |= φ1 ∨ φ2 if and only if σk |= φ1 or σk |= φ2;

• σk |= φ1 ∧ φ2 if and only if σk |= φ1 and σk |= φ2;

• σk |= ¬φ1 if and only if σk |= φ1 does not hold;
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• σk |= φ1Utφ2 if and only if there exits i ∈ N such that, (a)
∑

0≤l<i tk+l ≤ t, (b) σk+i |= φ2 and
(c) for each 0 ≤ j < i, σk+j |= φ1.

Note that the semantics of BLTL is defined over infinite traces, while of course any simulation trace must
be finite in length. It can be shown that traces of an appropriate (finite) length are sufficient to decide BLTL
properties. The interested reader can find details elsewhere46.

B. Statistical Model Checking

We briefly explain Statistical Model Checking53, the technique we use for verifying BioNetGen models
simulated by Gillespie’s algorithm. Statistical Model Checking treats the PMC problem as a statistical
inference problem, and solves it by randomized sampling of the traces (simulations) from the model. In
particular, the PMC problem is naturally phrased as a hypothesis testing problem, i.e., deciding between
two hypotheses – M |= Pr>θ[φ] versus M |= Pr<θ[φ]. In other words, to determine whether M satisfies φ
with a probability p > θ, we test the hypothesis H0 : p > θ against H1 : p < θ. Sampled traces are model
checked individually to determine whether a given property φ holds, and the number of satisfying traces is
used by a hypothesis testing procedure to decide (approximately) between H0 and H1. Note that Statistical
Model Checking cannot guarantee a correct answer to the PMC problem. Still, the probability of giving a
wrong answer can be arbitrarily bounded by the user.

We introduced a sequential Bayesian hypothesis testing approach and applied to the verification of rule-
based models of signaling pathways and other stochastic systems46,47. Sequential sampling means that the
number of sampled traces is not fixed a priori, but it is instead determined at “run-time”, depending on the
evidence gathered by the samples seen so far. This often leads to significantly smaller number of sampled
traces. The hypothesis test is based on the Bayes Factor, that is, the likelihood ratio of the sampled data
with respect to the two hypotheses. Formally, the Bayes Factor of data d and hypotheses H0 and H1 is
B = Pr(d|H0)

Pr(d|H1) . Therefore, B can be interpreted as a measure of evidence (given by the data d) in favor of
H0. Now, fix an evidence threshold T > 1. Our algorithm iteratively draws independent and identically
distributed (iid) sample traces σ1, σ2, ..., and checks whether they satisfy φ. The algorithm then computes
the Bayes Factor B to check if it has obtained conclusive evidence. The algorithm accepts H0 if B > T ,
and rejects H0 (accepting H1) if B < 1

T . Otherwise ( 1
T 6 B 6 T ) it continues drawing iid samples. It

can be shown that when the algorithm terminates, the probability of a wrong answer is bounded above by
1
T (details of the algorithm can be found elsewhere46).

C. Application to HMGB1 model

We applied Statistical Model Checking (SMC) to verify formally some fundamental properties that
our BioNetGen model should satisfy. We test whether the model satisfies a given BLTL property with
probability p > 0.9. We set the threshold T = 1000 for the verification, so the probability of a wrong
answer is smaller than 10−3.

Property 1: p53 is normally expressed at low levels in human cells. We verified the following property

Pr>0.9[F600(G900(P53 < 3.3× 104))]

which informally means that the number of p53 molecules will be less than a threshold value within 10
hours, and it will always stay below this value during the next 900 minutes. SMC accepts this property as
true after sampling 22 (satisfying) traces.

Property 2: p53’s expression level increases quickly in response to various stresses, including oncopro-
teins activation. We verified the property

Pr>0.9[F100(P53 > 5.3× 104)]
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TABLE II: Statistical Model Checking of Property 4 and 5

Property 4: Pr>0.9[F600(CyclinE > 900)] Property 5: Pr>0.9[F600(CyclinD > 900)]

HMGB1 # of Samples # of Success Result dRAS # of Samples # of Success Result

102 9 0 False 10−6 22 22 True

103 55 16 False 10−2 26 5 False

106 22 22 True 10−1 9 0 False

that is, within 100 minutes p53’s level will eventually be larger than 5.3× 104. SMC accepts this property
as true, after sampling 38 traces (of which 37 satisfying).

Property 3: PI3K will be activated in order of minutes after HMGB1 binds to RAGE. We verified the
following property

Pr>0.9[F20(PI3Ka/PI3Ktot > 0.5)]

which means that half of PI3K will be activated within 20 minutes. If the initial value of HMGB1 is 104,
this property was accepted as true (22 satisfying traces). But if HMGB1 is set to 103, the property was
rejected (9 unsatisfying traces).

Property 4: The overexpression of HMGB1 will promote the expression level of Cyclin E before the
G1-S phase transition point, thereby facilitating the G1-S phase transition. We verified the property

Pr>0.9[F600(CyclinE > 900)]

that is, the number of Cyclin E will eventually exceed 900 within 600 minutes (10 hours). We verified this
property with various values of HMGB1 and the results are shown in Table II.

Property 5: Mutation in K-RAS leads to continuous activation of downstream pathways and overex-
pression of CyclinD in the G1 phase. We verified the property

Pr>0.9[F600(CyclinD > 900)]

with different RAS deactivation rates (dRAS). The results are presented in Table II. Property 4 and 5 show
that overexpression of HMGB1 and mutation of RAS (small dRAS value) will accelerate the expression of
cell regulatory protein CyclinD/E to promote cell proliferation. However, inhibition of HMGB1 and RAS
expression will prevent tumor growth.

Property 6: Within 300 minutes, Cyclin E’s expression level is very low until 50% of RAS has been
activated. We verified the property

Pr>0.9[(CyclinE < 10)U300(RASa/RAStot > 0.5)].

SMC accepted this property as true (22 satisfying traces).

V. DISCUSSION

We presented a reaction network model of the signaling transduction initiated by HMGB1. The model
incorporates the contribution from the most important known signaling components of the HMGB1 signal
transduction network. The model is expressed in the form of BioNetGen rules, and simulated using ODEs
and Gillespie’s algorithm under a range of conditions. We used Statistical Model Checking to validate
formally and automatically our model with respect to known experimental results.

Our simulations demonstrate a dose-dependent p53 and Cyclin E response curve to increasing HMGB1
stimulus. That is, overexpression of HMGB1 will promote the cell cycle regulatory proteins E2F and Cy-
clinD/E, and inhibit the pro-apoptotic protein p53, leading to increased cancer cell survival and decreased
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apoptosis. This is consistent with experimental observations in recent studies on cancer cells. We also in-
vestigated the role of different components in the pathway and predict their activity in response to various
conditions. We investigated how mutation of the RAS, ARF and P21 proteins influence the fate of cancer
cell. In particular, parameter variation showed that the mutated RAS will continuously activate the down-
stream signal transduction and increase the expression level of Cyclin E, leading to cancer cell proliferation.
Mutation or loss of the ARF protein could not inhibit MDM2’s activity and stabilize p53’s expression level
if HMGB1 is overexpressed, resulting in decreased apoptosis. Our model shows that the inhibition (or
deactivation) of RAS, Cyclin, and Cyclin-dependent kinases (CDK) could inhibit tumor growth.

Besides the PI3K-AKT and RAS-ERK pathways, HMGB1 can also activate the NFκB signaling path-
way23. This pathway regulates many pro-apoptotic and anti-apoptotic proteins’ transcription49. A larger
network for HMGB1 signal transduction and more analysis will be conducted in our future work.

A recent study has found that pancreatic tumor cells increase autophagy10, and release HMGB1 in
response to chemotherapy, radiation, and hypoxia, which may promote tumor cell survival9. It has been
hypothesized that direct inhibition of autophagy may be another way to inhibit tumor growth and enhance
the efficacy of cancer therapies10. The incorporation of autophagic proteins into the HMGB1 signaling
pathway is worth to be considered in future work.

Moreover, understanding of HMGB1 at mechanistic level is still not clear, and reaction rates for some
proteins interactions have not been measured by experiments. Although, currently, our model can only
qualitatively compare with the experimental behavior, it still provides valuable information about the be-
havior of HMGB1 signaling transduction in response to different stimuli. Since much research on HMGB1
is on the way, more experimental data, with the help of powerful model checking techniques, will help us
to estimate or constrain model parameters and make our models more realistic.
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APPENDIX A: ORDINARY DIFFERENTIAL EQUATIONS

d

dt
RAGEa(t) = k1RAGE(t)HMGB1− d1RAGEa(t)

d

dt
PI3Ka(t) = (k2RAGEa(t) + k′2RASa(t))PI3K(t)− d2PI3Ka(t)

d

dt
PIP3(t) = k3PI3Ka(t)PIP2(t)− d3PTEN(t)PIP3(t)

d

dt
AKTp(t) = k4PIP3(t)AKT (t)− d4AKTp(t)

d

dt
PTEN(t) = k5P53(t)3/(K3

1 + P53(t)3)− d5PTEN(t)

d

dt
mdm2(t) = k6P53(t)3/(K3

1 + P53(t)3)− d6mdm2(t)

d

dt
MDM2(t) = k7mdm2(t) + d8MDM2p(t)− (d7 + k8AKTp(t) + d′7ARF (t))MDM2(t)

d

dt
MDM2p(t) = k8AKTp(t)MDM2(t)− d8MDMp(t)− (d′8 + d′7ARF (t))MDM2p(t)

d

dt
P53(t) = k9 − d9P53(t)− d′9MDM2p(t)P53(t)

d

dt
P21(t) = k10P53(t)2/(K2

1 + P53(t)2)− d10P21(t)

d

dt
RASa(t) = a1RAGEa(t)RAS(t)− b1RASa(t)

d

dt
RAFa(t) = a2RASa(t)RAF (t)− b2RAFa(t)

d

dt
MEKp(t) = a3RAFa(t)MEK(t)− b3MEKp(t)

d

dt
ERKp(t) = a4MEKp(t)ERK(t)− b4ERKp(t)

d

dt
Myc(t) = a5ERKp(t)/(K2 + ERKp(t))− b5Myc(t)

d

dt
CD(t) =

a6ERKp(t)
K2 + ERKp(t)

+
a′6Myc(t)

K2 + Myc(t)
− (b6 + b′6P21(t) + b′′6INK4A(t))CD(t)

d

dt
RE(t) = a7RB(t)E2F (t)− b7RE(t)− b′7(CD(t) + CE(t))RE(t)

d

dt
RBp(t) = (a8RB(t) + b′7RE(t))CD(t)− (b8 + b′8)RBp(t) + b′7CE(t)RE(t)

d

dt
RB(t) = a9 + b8RBp(t)− a8CD(t)RB(t)− (a7E2F (t) + b9)RB(t)

d

dt
E2F (t) =

a10Myc(t)
K2 + Myc(t)

+ b′7CD(t)RE(t)− (a7RB(t) + b10)E2F (t) + b′7CE(t)RE(t)

d

dt
ARF (t) = a11E2F (t)/(K3 + E2F (t))− b11ARF (t)

d

dt
CE(t) = a12E2F (t)/(K3 + E2F (t))− b12CE(t)− b′6CE(t)P21(t)

d

dt
INK4A(t) = a13 − b13INK4A(t)


