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Abstract

Many genes and biological processes function in similar ways across different species. Cross-species
gene expression analysis, as a powerful tool to characterize the dynamical properties of the cell, has found
a number of applications, such as identifying a conserved core set of cell cycle genes. However, to the best
of our knowledge, there is limited effort on developing appropriate techniques to capture the causality
relations between genes from time-series microarray data across species. In this paper, we present hidden
Markov random field regression with L1 penalty to uncover the regulatory network structure for different
species. The algorithm provides a framework for sharing information across species via hidden component
graphs and is able to incorporate domain knowledge across species easily. We demonstrate our method
on two synthetic dataset and to discover causal graphs using innate immune response data.

1 Introduction

The activity of genes in a living cell is coordinated by a regulatory network that regulates gene expression
conditioned on environmental stimuli. With genome-wide expression profiles, it is possible to reverse-engineer
gene regulatory networks [12], which is essential for understanding how the cell functions. However, it remains
a challenging task due to inherent and observational noise in expression data, the need to identify for each
gene a small number of regulators among thousands of genes, and a limited number of samples in each
experiment.

Combining expression data from different species has been shown to help discovery of true association
between genes [3]. This is because many genes across species perform similar functions or share the same
regulatory relations, and one can exploit information on related genes in different species. Similarly, ex-
pression data from different environmental conditions or from multiple cell types can be used to improve
prediction of gene functions [31], because many genes may share similar activity and regulatory patterns
across conditions and cell types.

In addition to improving prediction quality, cross-species expression analysis can identify conserved/common
regulatory relations, which are more likely to play essential roles, as well as species-specific regulatory rela-
tions [37]. In the case of different environmental conditions and cell types, a combined analysis can identify
common regulatory patterns as well as those specific to one cell type and/or one condition. With the expo-
nential accumulation of microarray datasets, the benefits of cross-species analysis of expression data become
increasingly apparent [29].

Computationally, inferring regulatory network by cross-species analysis can be viewed as a multitask
learning problem. A multitask learning method performs several related learning tasks simultaneously,
borrowing information across tasks, instead of learning each task independently. In our application, each
task refers to learning a regulatory network from time-series microarray data generated from one cell type, in
a single species, and under one environmental condition. To the best of our knowledge, there is no systematic
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approach to jointly discover regulatory networks for several species by leveraging information across multiple
species, cell types, and environmental conditions.

A number of methods have been proposed for learning regulatory networks in a single species [19].
However, these methods do not take into account temporal patterns in time-series gene expression data.
Other methods have been proposed to exploit information in temporal expression patterns. [27] propose to
apply temporal causal modeling methods to causality inference on expression data, which provides useful
insights on the regulatory relationships between genes. The method in [27] combines Granger causality [20],
an operational definition of causality well known in econometrics, with L1 regression algorithms, to perform
causality inference involving many variables. Similar methods have received considerable attention in data
mining problems [9, 34].

In this paper, we propose a novel probabilistic graphical model approach for learning regulatory networks
from expression data in multiple species, cell types, and environmental conditions. It is based on the
temporal causal models [9, 34, 27], but unlike [27], which can handle only one task (i.e. one species, cell type
or environmental condition), our proposed method performs regulatory network discovery in a multitask
learning manner, simultaneously learning from multiple datasets. We assume the regulatory networks are
composed of a mixture of hidden component networks, which may be shared across species, cell types, and
environmental conditions. Depending on the combination of species, cell type, and condition, the selection of
component networks can be different, and the similarity can be guided by parameters, e.g. the evolutionary
distance between species.

We infer the hidden component networks as well as the mixture assignments by defining the joint prob-
ability of observations (i.e. the microarray data from all species, cell types, and environmental conditions)
and the hidden states (i.e. the mixture assignment) over graph G via hidden Markov random field (hMRF)
with L1 penalty. One major advantage of our model is that domain knowledge on the evolution distance of
species can be naturally incorporated in the graph G in order to provide constraint on mixture selections
during inference.

In a related work, [6] proposes to use differential equations to infer regulatory networks by combining
evolutionary cost and gene expression data across species. Unlike their work, which does not model time
lag effect, our method explicitly takes into account the information from multiple previous time points when
inferring causality, which is able to better capture the biological system. There are other related work that
address alignment of biological networks across species [37]. Network alignment methods take networks of
the same type from several species as input, and the goal is to identify functionally conserved subnetworks.
In contrast, our method takes gene expression time series from multiple species, and simultaneously infers
the causal relationship between genes as well as similar subnetworks across species. Another related work is
local alignment of network motifs [2], but it aims to address different goals, i.e. given the input of a single
network in one species and a list of motifs, finding significant motifs present in the network. In [30, 31],
a genes dynamic property is summarized by computing an expression score from the time series, while our
method uses all time points to infer causality, without first collapsing them into a single score.

The rest of the paper is organized as follows: we first review the temporal graphical modeling based
on Granger causality in Section 2; then we motivate the challenges in cross-species analysis and describe
the details of our proposed algorithms. We show experiment results on two synthetic datasets and one
application data on cross-species in Section 3. Finally, we summarize the paper and conclude with future
work.

2 Methodology

Learning the graph structures of regulatory networks from microarray data have found great success. Recent
progress on structure learning establishes L1-based algorithms as one of the most promising techniques for
this task, especially for applications with inherent sparse graph structures [33, 42, 43, 18]. Additionally,
L1-based algorithms have been adapted to Granger casuality to discover the temporal “causal” networks
between genes from time-series microarray data, which reveals important dependency information between
current observations and histories [27]. Such approaches are based on the notion of Granger causality [20]
between time-series. In what follows, we first review the Granger graphical models, then introduce the
approach of hidden Markov random field regression for cross-species gene regulatory network discovery.
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2.1 Graphical Granger Modeling

“Granger Causality” [20] was introduced by the Nobel prize winning economist, Clive Granger, and has
proven useful as an operational notion of causality in time series analysis in the area of econometrics. It
is based on the intuition that a cause should necessarily precede its effect, and in particular that if a time
series variable causally affects another, then the past values of the former should be helpful in predicting
the future values of the latter. More specifically, let {x1,t}T

t=1 denote the time series variables for x1 and
{x2,t}T

t=1 the same for x2. A time series x1 is said to “Granger cause” another time series x2, if given the
following two regressions:

x2,t ≈
d∑

j=1

aj · x2,t−j +
d∑

j=1

bj · x1,t−j (1), x2,t ≈
d∑

j=1

aj · x2,t−j (2)

where d is the maximum “lag” allowed in past observations, (2) is more accurate than (1) with a statistically
significant advantage, such as F-test 1.

The notion of Granger causality was defined only for a pair of time series. Recently, several graphical
modeling approaches have been developed to determine the causal relationships between multiple time series
variables [1, 28, 27]. These approaches are based on L1 regularized regression algorithms, such as Lasso,
as a more convenient, efficient, and effective alternative to the application of exhaustive pairwise Granger
tests among all the time series. Taking three time series x1, x2, x3 as an example, for all i, these approaches
regress xi,t in terms of the previous d values of all the time series, applying an L1 penalty on the coefficients:

β̂ = arg min
β

∑
t

(x1,t −
3∑

i=1

d∑
j=1

βi,jxi,t−j)2 + λ(‖β‖1)

L1 regularization is well known for variable selection, i.e. variables that are not significantly improving the
accuracy of the model will have their values set to 0. This can be readily used to determine causality in
the Granger sense: if any of the coefficients corresponding to a past value of xj is non-zero, it means that
it helps significantly to improve the accuracy of modeling the current value of xi, and thus xj is a cause of
xi in a Granger sense. We can represent the causal relationships between variables via a feature graph (see
Figure 1(a) for an example).

In this paper, we use the term “feature” to mean a time series (e.g. x) and use temporal variables or
lagged variables to refer to the individual variables (e.g. xt). In the context of microarray time series, a
feature denotes the time series of expression levels of a gene, while a temporal variable or a lagged variable
refers to the expression level of a gene at a given time point. Notice that temporal causal modeling is not
limited to one single method, but a family of models that capture the temporal causal relations between
time-series data. For example, recent advances in regularization theory have led to a series of extensions
of the original lasso algorithm, such as elastic net and group lasso, which have been adapted to temporal
graphical modeling and demonstrated effectiveness on different applications [28, 27].

2.2 Cross-species Regulatory Network Discovery

In Section 1, we identify our task of cross-species microarray analysis as an application of multi-task learning.
One of the dominant approaches in multitask learning is to model the tasks as generated from a linear
combination of a set of base components (classifiers or networks). In other words, the relatedness of multiple
tasks can be explained by the fact that they share a certain number of hidden components [7]. Borrowing the
idea, one simple approach to cross-species structure learning is to assume that the networks are from a mixture
of hidden base networks. Mapping back to the Granger graphical models, we can think of the observations
at time t, xt, as generated from a mixture of regressions of previous observations xt−1. Depending on the
species, cell type and environment condition, the assignment of mixtures is different.

Notice that one major difference between our application and most previous multitask learning settings
is: we are also given rich prior knowledge on the relations between these tasks (for example, the evolutionary

1Notice that the Granger Causality is not meant to be equivalent to true causality, but is merely intended to provide useful
information regarding causation.
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(a) (b) (c) (d)

Figure 1: (a) Demonstration to convert a temporal graph to feature graph; (b) Graphical model represen-
tation of hidden Markov random field regression; (c,d) Demonstration of hMRF-regression for cross-species
gene regulatory network discovery. Input: microarray data from multiple species (c) and domain knowledge
on the similarity between species (d). Output: the regulatory networks of each species. The algorithm
assumes the regulatory networks of each species are generated from a linear mixture of common composite
graphs.

distance between species). This information can be abstracted as a graph G, in which node corresponds to
a cell type in a species under certain condition and there is an edge between nodes if they share the same
cell type, species, or condition. In this way, we are able to better infer the hidden component networks and
select component for each species.

2.2.1 Preliminary: Data processing and graph construction

In order to conduct the cross-species microarray analysis, we need to determined the subset of genes that
are orthologous across species. For each species, we first select the genes that appear in all the experiments;
then we obtain the orthologs between species A and B, and select the common regulatory genes that either
themselves or their orthologs can be found in the microarray data.

The prior knowledge can be represented by a high-level graph. In general, a node represents one species
(or a cell type under some condition); there is an edge between the nodes for genes in the same species but
in different experiments because we expect many of them would exhibit similar regulatory relations; there
is also an edge between the same cell type/condition across different species if the distance between the two
species is smaller than a threshold, since some of the genes may share similar regulated functions as their
orthologs. One example of the species-level graph for three species is as shown in Figure 1.

2.2.2 Hidden Markov Random Field Regression

A hidden Markov random field (hMRF) [24] is a generalization of hidden Markov model (HMM). It has an
underlying Markov random field, i.e. an undirected graphical model with some graph structure, instead of a
simple chain structure as in HMM. hMRF has been successfully applied to many applications with correlated
data, such as image segmentation , genetics , and disease mapping. Therefore we use the framework to model
the species-level constraint.

In order to integrate the species-level constraint with regulatory network discovery using Granger tem-
poral models, we extend the hMRF to handle regression. The basic assumption is that the time-series are
generated from a stochastic process, where the current observation of node i (i.e. species i) x

(i)
t is condition-

ally dependent on the histories x
(i)
t−1, . . . , x

(i)
t−L, as well as an underlying process of hidden states s(i). The

semantic of the hidden states are the assignment of hidden component networks. More specifically, given
the time-series observations of node i, x(i) = [x(i)

1 , . . . , x
(i)
N ]T , we can define a pairwise hMRF as a product
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of node potentials and edge potentials:

P (x(1), . . . , x(M), s(1), . . . , s(M)|β, Σ, w) =
1

Z

M∏
i=1

Φ(x(i), s(i)|β, Σ)
∏

(i,j)∈edge

Φ(s(i), s(j)|w) (1)

where the node potential is a product of multivariate Gaussian distributions, i.e.

Φ(x(i), s(i)|β, Σ) =

N(i)∏
t=1

1

(2π)p/2|Σ|1/2
× exp(−

1

2
(x

(i)
t − o

(i)
t βs(i) )

T Σ−1

s(i) (x
(i)
t − o

(i)
t βs(i) )

o
(i)
t is a concatenated matrix of previous observations [x(i)

t−1, . . . , x
(i)
t−L]T , and p is the dimension of x

(i)
t ;

The edge potential Φ(s(i), s(j)|w) is defined as Φ(s(i), s(j)|w) = exp(
∑

k wkδk(s(i), s(j))), where δ is the
indicator function, i.e. δk={s,s′}(s(i), s(j)) = 1 if s(i) = s and s(j) = s′, and 0 otherwise; ws(i),s(j) is the
parameter to evaluate the similarity between state s and s′, similar to the transition probability in HMM;
Z is the normalization constant. By our definition of node potentials, the value of Z will only be affected by
the edge potentials, i.e. Z =

∑
s(1),...,s(M) exp(

∑
(i,j)∈edge ws(i),s(j)δ(s(i), s(j))).

Figure 1 shows the graphical model representation of hMRF. As we can see, the model aims to infer the
hidden regulatory networks (captured by the regression coefficients βs) via mixture of regression [5] (i.e. the
node potential) and the mixture selection is constrained by species-level graph (i.e. the edge potential).

There are three sets of parameters in the model, namely β, Σ and w. Since values of the state variables
s(1), . . . , s(M) is not known, EM algorithm is applied to estimate the parameters [4]: Specifically, we calculate
the expected value of the log likelihood function Q as follows:

Q =
∑

s(1),...,s(M)

P ({s(i)}|{x(i)}, β̃, Σ̃, w̃) log P ({x(i)}, {s(i)}|β, Σ, w)

For the M-step, we estimate the values of the parameters β, Σ and w that maximize Q. Taking the derivatives
of Q with respect to βs and Σs respectively, we have

β̂s = (V (x, s)T V (x, s))−1V (x, s)U(x, s)

Σ̂s = (U(x, s) − β̂T
s V (x, s))T (U(x, s) − β̂T

s V (x, s))/

N(i)∑
n=1

P̃ (i)(s)

where

P̃ (i)(s) = P (s(i) = s|x(1), . . . , x(M), β̃, Σ̃, w̃), U(x, s) = [

√
(P̃ (L)(s))x(L) . . .

√
(P̃ (M)(s))x(M)]T (2)

V (x, s) =



√
(P̃ (1)(s))x(1) . . .

√
(P̃ (M−L)(s))x(M−L+2)√

(P̃ (2)(s))x(2) . . .

√
(P̃ (M−L+3)(s))x(M−L+3)

. . .√
(P̃ (L−1)(s))x(L−1) . . .

√
(P̃ (M)(s))x(M)


T

We can see that the solution can be achieved as a normal linear regression by reweighing the observed
variables and response variables with weights P̃ (i)(s). For the parameter w, there is no closed form solution.
We use iterative searching algorithms with the first derivative of Q with respect to ws,s′ as follows:

∂Q

ws,s′
=

∑
(i,j)∈edge

(P (s(i) = s, s(j) = s′|x, β̃, Σ̃, w̃)δ(s, s′)) −
∑

(i,j)∈edge

E[δ(s(i), s(j))|x, β, Σ, w]

Gradient descent algorithm is applied to compute the solution of w.
For E-step, we use loopy belief propagation to compute the marginal of individual node P̃ (i)(s) and edges

P̃ (s(i), s(j)) [35].

2.3 Extending hMRF regression with L1 penalty

Next we examine how to extend hMRF regression to incorporate L1 penalty. Following the idea in [26], we
add a Laplacian prior for β as follows:

P (β|λ) = (λ/2)N exp(−λ‖β‖1).
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Algorithm I: hMRF Regression for temporal graph structure learning

1. Input: For each gene i, we are given time series data x(i) = {x(i)
1 . . . x

(i)
N(i)

} where x
(i)
t is a p-dimensional vector;

Parameters: (1) time lag L; (2) number of hidden states K;
Function input: regression function f

2. Run hMRF regression and output coefficients βs for each state s, the mixing of hidden states P̃ (i)(s)

3. For each gene i, iterate the following steps:

3.1 Initialize the adjacency matrix for the p features, i.e. G = 〈V, E〉 where V is the set of p features.

3.2 For each feature xu ∈ V place an edge xu → xv into E, if and only if at least one of the corresponding
coefficients for xu in

∑
s P̃ (i)(s)βs is above threshold θ.

As a result, the terms relevant to β in auxiliary function Q include

Qλ = −
M∑

i=1

N(i)∑
t=1

∑
s(i)

P (s(i)|x(1), . . . , x(M), β̃, Σ̃, w̃) × (x
(i)
t − x

(i)
t−1..t−Lβs(i) )

T Σ−1

s(i) (x
(i)
t − x

(i)
t−1..t−Lβs(i) ) − λ‖β‖1

Recent reexamination of gradient-based optimization algorithms, such as the coordinate descent, has shown
that they are very effective to solve lasso-type regressions [17]. We compute the first derivative of Qλ with
respect to βs as follows:

Q′
βs

=

−
∑M

i=1

∑N(i)

t=1 Wi(s)(x
(i)
t − x

(i)
t−1..t−Lβs(i) )T − λ if βs >= 0

−
∑M

i=1

∑N(i)

t=1 Wi(s)(x
(i)
t − x

(i)
t−1..t−Lβs(i) )T + λ if βs < 0

where Wi(s) = P (s(i)|x(1), . . . , x(M), β̃, Σ̃, w̃)(Σ−1
s + Σ−1

s
T ). Then we apply coordinate descent algorithms

to get the solution to β. Other regression algorithms with L1 penalty, such as elastic net and group lasso,
can also be extended similarly. We skip the full discussions.

2.4 hMRF Regression for Learning Dynamic Temporal Graphs

To apply hMRF regression to learn dynamic temporal graphs, we need to determine how to combine compo-
nent graphs associated with each state into one. In this paper, we use a heuristic weighted average approach:
i.e. for each gene i, reweighing the base graph of state s (represented by coefficient βs) with its mixing
proportion P̃ (i)(s). Then we decide that there is an edge between two nodes if and only if the corresponding
coefficients in the weighted average matrix

∑
s P̃ (i)(s)βs are above some threshold. In our experiment, the

threshold is set to 0.05. Algorithm I shows the details.

3 Experimental Results

To examine the effectiveness of the proposed algorithm algorithm, we conduct experiments on two simulation
dataset and one application data of cross-species innate immune response analysis.

3.1 Simulation data

The two simulation datasets are both generated from a 2-state MRF, whose graph structure is a 10×10 grid
(notice that this corresponds to species-level graph in the application of cross-species regulatory network
discovery), and the coefficients are defined as follows: w(i, i) = 1 and w(i, i′) = 0.5 for i 6= i′. The
observations of each node (i.e. each task) are generated from Gaussian distributions using examples of the
AR models used in [43, 18] (notice that this corresponds to the gene-regulatory networks of individual species
in the application of cross-species regulatory network discovery). More specifically:
Simulation Data I: assume that state 1 corresponds to a sparse scenario, i.e. the inverse of the covariance
matrix is an AR(1) model as follows: (

∑−1)ii = 1, (
∑−1)i,i−1 = (

∑−1)i−1,i = 0.5, and state 2 corresponds
to dense scenario, (

∑−1)ii = 2, (
∑−1)ii′ = 1. The goal of conducting experiments on this dataset is to

verify whether our algorithm is able to recover the sparse component graph from data mixed with dense
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Figure 2: Example of learned graphs by different methods: (1a, 1b) true component graphs of state 1 and
state 2; (2a, 2b) learned graphs by baseline method SUB; (3a, 3b) learned graphs by hMRF; (4) learned
graph by baseline method ALL

Table 1: Comparison Results of Structure Learning on Simulation Data (sample size per node = 500)

Algorithm Simulation I (F1) Simulation I (F1)
State 1 State 2 State 1 State 2

hMRF 0.9251 0.7577 1.000 0.9085
ALL 0.8191 0.6388 0.8160 0.7664
SUB 0.7429 0.7273 1.000 0.7273

component graph.
Simulation Data II: contain data generated from Gaussian distributions of inverse covariance with similar
graph structures: state 1 corresponds to the same distribution as state 1 in Simulation Data I, and state
2 corresponds (

∑−1)ii = 1, (
∑−1)i,i−1 = (

∑−1)i−1,i = 0.5, (
∑−1)i,i−2 = (

∑−1)i−2,i = 0.25 (see Figure
2 (1a) and (2a) for graph structure). Our goal is to examine whether the algorithm can recover the true
graphs when the underlying two component graphs are similar, which better mimics our application data on
cross-species gene regulatory networks. Therefore we focus our discussion on the results of this dataset.

In the experiment, we sample the values of underlying hidden states for all the nodes using Gibbs
sampling; then for each node, we generate N samples from the underlying distributions determined by the
value of hidden states. We vary the number of samples N ranging from 10, 20, 50, 100, 200, 300, 400, 500 to
1000. The penalty terms of Lasso are selected by cross-validation. We evaluate the performance of structure
learning methods using the F1-measure, i.e. viewing the causal modeling problem as that of predicting
the inclusion of the edges in the true graph, or the corresponding adjacency matrix. Recall that, given
precision P and recall R, the F1-measure is defined as F1 = 2PR/(P + R), and hence strikes a balance in
the trade-off between the two measures (see example [38] for use of these metrics in evaluation of structural
learning methods). In addition, we also evaluate the performance of state assignment of each node using the
F1-measure.

We compare the performance of hMRF with two other baselines: one is aggregating all the data from
different tasks and learn one graph (referred to as ”ALL”), and the other is to learning a graph using data
of individual task only (referred to as ”SUB”). We repeated each sample size N 30 times and report the
average on in Figure 2 and Table 1. Figure 2 show an example of learned graph by different methods when
the sample size N is 200. As we can see, hMRF produces graphs closest to the ground truth. Table 1 shows
that hMRF achieves better performance than competing methods on both Simulation Data I and II.

3.2 Applications to Cross-Species Gene Regulatory Network Discovery

Most multicellular organisms rely on their immune system to defend against the infection from a multitude of
pathogens. There have been many studies using microarrays to compare immune gene expression programs
under different conditions [23, 8, 22]. To understand the roles and possible interplays between different types
of immune cells, it is important to identify both regulatory relations common to different immune cells, as
well as those specific to a certain cell type. While each of these subsets of experiments (macrophages vs.
dendritic, human vs. mouse etc.) can be analyzed separately and then compared to each other, the learned
biological networks become much less reliable due to the noise in gene expression data. It is therefore
desirable to combine microarray gene expression datasets from different studies to overcome noise in the
datasets and jointly infer regulatory networks involved in immune response.
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(a) Species-level Graph (b) In-degree Distribution (c) Out-degree Distribution

Figure 3: (a) Species-level Graph. Red/blue edges: dependency due to same species (i.e. human/mouse);
green edges: dependency due to same experiments; (conveniently generated from domain knowledge) (b)
Distribution of in-degree counts (c) Distribution of out-degree counts

We applied our algorithm to learn the causal networks between genes for immune response system.
Specifically, we collected time-series microarray datasets on innate immune response of human and mouse
from the supporting websites of [8, 11, 14, 21, 22, 23, 25, 32, 41]. The gene expression experiments were
done on macrophages (M) and dendritic cells (DC) in humans and mice, under the infection of two types
of bacteria, Gram-positive (P) and Gram-negative (N). The only exception is mouse dendritic cells, where
we only found data on Gram-negative bacteria. The 39 microarrayexperiments are grouped into seven
datasets, and referred to as “human.DC.N”, “human.DC.P”, “human.M.N”, “human.M.P”, “mouse.DC.N”,
“mouse.M.N” and “mouse.M.P” respectively (see [30] for full details of the data).

In order to exploit information shared across species/cell types, we process the data as follows: for those
experiments on the same species, we only select the genes that appear in all the experiments. This results
in 3869 genes for mouse microarray data and 1651 genes for human microarray data; next we obtain the
human and mouse orthologs from Mouse Genome Database [15], and select the common candidate regulatory
genes where either themselves or their orthologs can be found in our dataset. This results in a set of 789
common genes across species. We construct the species-level graph as follows: there is an edge between two
experiments on the same species if they share the same cell type or the same infection type; there is also
an edge between the same cell type and infection type across different species because we expect that some
of the genes may share the similar regulated functions as their orthologs. This results in the species-level
graph as Figure 3(a).

We varied the number of hidden component graphs from 2 to 7 and set to 4 by Bayesian information
criterion (BIC) score. We ran experiments for a maximum lags of 2. There is an edge in the component
graph if and only if the absolute value of its corresponding coefficients are larger than 0.05. In the end,
we have around 2000 edges in each component graph. Generally, the degree of the nodes in the component
graph roughly follows the power law (Figure 3(b, c)).

3.2.1 Component-Independent Regulations

In order to better examine the results, we divided the genes in a component graph into three classes based
on their connectivity: genes with only out-going edges, genes with only incoming edges, and genes with both
types of edges. As we show later, genes in each class have demonstrated different characteristics.

We identified the top ten well-connected genes that have only out-going edges and common to all com-
ponent graphs (Table 2). The list contains a number of chemokines and receptors, which are consistent with
the hypothesis that genes in this class serve to sense environment and inter-cellular communication. E.g.
IL1R2 is a receptor for pro-inflammatory interleukin 1 (IL-1) and related to cell migration [40]. NFkB is a
transcription factor that can be activated by intra-/extra-cellular stimuli including cytokines and bacterial
products. CXCL10 is a chemokine which can trigger many effects including stimulation of immun cells.

We identified the top ten well-connected genes with only incoming edges (Table 3). These genes are
involved in various celluar processes. E.g. CCT5 is a member of TCP1 ring complex that folds various
proteins including actin and tubulin. CYP2E1 is an enzyme that catalyzes many reactions involved in drug
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Table 2: Top 10 Well-connected Genes with only Out-
going Edges

Out-degree Symbol Description
43 FTH1 ferritin, heavy polypeptide 1
25 RPL37 ribosomal protein L37
20 IL1R2 interleukin 1 receptor, type II
18 NFKB1 nuclear factor of kappa light polypep-

tide gene enhancer in B-cells 1
18 CXCL10 chemokine (C-X-C motif) ligand 10
17 CYTIP cytohesin 1 interacting protein
14 DUSP2 dual specificity phosphatase 2
12 PTGS2 prostaglandin-endoperoxide synthase

2
12 MMP12 matrix metallopeptidase 12
12 LSP1 lymphocyte-specific protein 1

Table 3: Top 10 Well-connected Genes with only In-
coming Edges

In-degree Symbol Description
28 CCT5 chaperonin TCP1 subunit 5
28 PCNA proliferating cell nuclear antigen
21 CYP2E1 cytochrome P450, family 2, subfamily

E, polypeptide 1
20 NEDD4 neural precursor developmentally

down-regulated 4
16 ZFHX3 zinc finger homeobox 3
15 EXT2 exostoses (multiple) 2
13 CLK3 CDC-like kinase 3
12 NMT1 N-myristoyltransferase 1
10 CBX5 chromobox homolog 5
10 CD1D T-cell surface glycoprotein CD1d

Table 4: Example of Component-specific Hubs

Component1 HLA-DRA, ID1, CTSB, ELK1, CDKN2A Component2 TSC22D3, ACVR2A, EPHA5, NFE2, PCTK3
Component3 PIK3R1, TK2, IL1R1 Component4 ASNS, MAP4K1, KCNH2, INPPL1, COL9A2

metabolism. CD1 mediates the presentation of primarily lipid and glycolipid antigens of self or microbial
origin to T cells.

Next, we look at densely connected subgraphs in the learned component graphs. To further enforce
sparcity, we apply a more stringent threshold (0.2) on the absolute value of the edge weights. Here we show
one example of the subgraphs (Figure 4). The genes with only out-going edges in this subgraph include
a number of genes located on the membrane, e.g. CD14 [13], and HLA class II histocompatibility antigen
(HLA-DRA), which are expressed in antigen presenting cells and plays a central role in the immune system
[39]. The middle layer of the sub-graph includes GTP binding protein (GTPBP1), and CDKN1A, a cell
cycle regulator, and VIM, which is involved in attachment, migration, and cell signaling [36]. The bottom
level of the graph includes genes mediate signal transductions (CD83), important chemokines (CCL5), and
interferon-induced GTPase (GBP1).

3.2.2 Component-specific Regulations

Next we compare the component graphs and identify characteristics specific to each graph. First, we compare
the hub genes in each component graph, which are defined as genes with at least 5 outgoing edges and no
incoming edges. We identify a total of 40 component specific hub genes. For component graph 1, the list
includes genes involved in cell cycle control (E2F1, CDKN2A) and wound repair (MMP3). In addition,
ITGA7 is involved in cell-cell interaction, and MAP3K8 can induce the production of NFkB. For component
graph 2, the list includes TSC22D3, which plays a key role in the anti-inflammatory process. Hub genes in
component 3 include Il1R1, interleukin 1 receptor, and PIK3R1, which are involved in metabolism of insulin.
For component 4, hub genes include IRF9, a regulatory factor of interferons (proteins released by cells in
response to pathogens), and MYH9, which has a function in the maintenance of cell shape. Some of the
component-specific hub genes are listed in Table 4.

To characterize the genes with high incoming edges in each component graph, we examine the genes with
at least 20 incoming edges and confirmed enriched GO categories [16]. For example, some of the top enriched
categories include “Regulation of Glucose Transport” (component 1; corrected pval=0.002), “Leukocyte
Homeostasis” (component 2 and 3; corrected pval < 0.001), “Locomotory Behavior” (component 2 and 3;
corrected pval < 0.006), and “Double-strand break repair” (component 4; corrected pval=0.034).

3.2.3 Comparison with Other Approaches

We also compare the learned networks generated by hMRF with the networks by two other baselines: one
is aggregating all the data from different tasks and learn one graph (”ALL”), and the other is to learning a
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Figure 4: An example of densely connected subgraphs in the learned component graphs. The regulation
relation can be either positive (red edges) or negative (blue edges).

Table 5: Top Five Component-Specific Enriched Biological Processes

Component 1 Component 2 Component 3 Component 4

regulation of glucose import response to organic substance response to organic substance double-strand break repair
glucose import leukocyte homeostasis leukocyte homeostasisstimulus response to abiotic stimulus
regulation of glucose transport homeostasis of number of cells cellular response to stimulus cellular response to stimulus
response to organic substance cellular response to stimulus response to chemical stimulus response to heat
response to peptide hormone
stimulus

positive regulation of cellular
process

positive regulation of cellular
process

positive regulation of catabolic
process

graph using data of individual task only (”SUB”). Compared with SUB, our method has major advantages
since some of the datasets, for example Human.DC.P and Mouse.M.N, have very limited number of time-
series observations (1-2), and no reasonable graph can be generated by SUB. For fair comparison (in favor of
SUB method), we choose the dataset with the largest number of time-series observations, i.e. Human.M.N,
to compare the results of different methods. One general observation is that the networks by ALL (31,218
edges) and SUB (14,346 edges) are much denser than that by hMRF (7458 edges) while the three graphs share
4,071 edges in common. Sparse graphs do not necessarily suggest better performance, but around 54.6%
commonality suggests that hMRF is able to provide a network with much higher precisions. Figure 6 lists an
example of 10 genes with the highest number of out-degrees in the learned networks. From the results, we
can see that hMRF not only shares some top-ranked genes with the other two algorithms, such as CXCL10,
but also uniquely identifies important immune genes, such as IL1R2, HLA-DRA, and CD14, as well as B2M
(Beta-2-microglobulin), which is a serum protein found in association with the major histocompatibility
complex (MHC) class I heavy chain on the surface of nearly all nucleated cells; MSN (Moesin), which is
localized to filopodia and other membranous protrusions that are important for cell-cell recognition and
functions as cross-linkers between plasma membranes and actin-based cytoskeletons.

3.2.4 Bootstrap Evaluation

In addition, we also evaluate the performance of our method by applying the Bootstrap procedure, which is a
technique widely used in statistics for evaluating statistical accuracy (see, [10] for a review). More precisely,
given the original lagged data matrix, we randomly draw B datasets by sampling with replacement the rows
of the original data matrix, so that each dataset has the same number of rows as the original lagged data
matrix. We then apply our method to each of the B bootstrap datasets. Comparing the original network
(i.e. the network obtained by using the original dataset) with the bootstrap networks (i.e. those obtained
using the bootstrap datasets) allows us to get a measure of confidence in the causal relationships identified
in the original network. In particular, for each causal relationship identified in the original network, we can
get confidence in that relationship by counting the number of times it appears in the bootstrap networks.
As shown in Table 7, the causal relationships identified by our method in the original network appear on
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Table 6: Top 10 Genes by Out-degress in the Learned Networks
by Different Methods

hMRF ALL SUB
EntrezID Edge # EntrezID Edges # EntrezID Edges #

FTH1 182 PTGS2 170 ACVR2A 224
IL1R2 110 ACVR2A 157 VPS45 179
B2M 104 CXCL10 154 PTGS2 175
VIM 75 DUSP2 145 NFE2 172

CXCL10 74 PPIB 140 FTH1 168
RPL37 71 FMO1 136 FOS 167
LSP1 70 PECAM1 135 PECAM1 162

HLA-DRA 68 NR4A1 132 FPR1 160
MSN 66 MCM4 131 CDC6 157
CD14 60 IL7R 128 LSP1 140

Table 7: Percentage of Overlap between
Bootstrap Networks and Original Networks

Species Type % of Overlap
human.DC.N 0.7572
human.DC.P 0.7569
human.M.N 0.7541
human.M.P 0.7575
mouse.DC.N 0.7713
mouse.M.N 0.7510
mouse.M.P 0.7527

the average 75.2% of the time in the bootstrap networks, which demonstrates that hMRF produces stable
networks.

4 Conclusion

In this paper we examine the problem of discovering regulatory networks from multi-species time-series
microarray data by leveraging the common regulation information across species. We develop hidden Markov
random field regression with L1 penalty to extend temporal Granger modeling for multitask learning. We
show that our method is able to uncover causal relations on two synthetic datasets, as well as conserved
regulatory network common to two types of cells in humans and mice and shared between response to
different types of bacteria. For future work, we are interested in more systematic evaluation of the experiment
results. We also plan to apply our model for other types of cross-species regulatory network discovery, such
as antifungal drug resistance.
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