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Abstract—External factors such as radiation, drugs or
chemotherapy can alter the expressions of a subset of
genes. We call these genes the primarily affected genes.
Primarily affected genes eventually can change the expres-
sions of other genes as they activate/suppress them through
interactions. Measuring the gene expressions before and
after applying an external factor (i.e., perturbation) in
microarray experiments can reveal how the expression of
each gene changes. It however can not identify the cause
of the change.

In this paper, we consider the problem of identifying pri-
marily affected genes given the expression measurements
of a set of genes before and after the application of an
external perturbation. We develop a novel probabilistic
method to quantify the cause of differential expression
of each gene. Our method considers the possible gene
interactions in regulatory and signaling networks, for a
large number of perturbed genes. It uses a Bayesian model
to capture the dependency between the genes.

Our experiments on both real and synthetic datasets
demonstrate that our method can find primarily affected
genes with high accuracy. Our experiments also suggest
that our method is significantly more accurate then SSEM,
a recent method developed for single gene perturbations,
and the Student’s t-test.

I. INTRODUCTION

A significant set of microarray experiments mea-
sure gene expressions in the presence of external
perturbations [7, 19]. In these perturbation experi-
ments, radiation [38], drug [28] or other biological
conditions are administered on tissues and their
responses are monitored using microarrays. The
expressions of the genes before perturbation cor-
responds to control data, while the expressions of
genes after perturbations corresponds to non-control
data [16].

A fraction of genes respond to the external per-
turbation by changing their expression values sig-
nificantly between control and non-control groups.
Such genes are called differentially expressed (DE)
genes [3]. The remaining genes, without noticeable
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Fig. 1. Illustration of the impact of a hypothetical external per-
turbation on a small portion of the Pancreatic Cancer pathway. The
pathway is taken from the KEGG database. The solid rectangles de-
note the genes affected directly by perturbation, the dashed rectangles
indicate genes secondarily affected through interactions. The dotted
rectangles denote the genes without any change in expression. →
implies activation and a implies inhibition. In this figure, gene K-
Ras, Raf and Cob42Roc are primarily affected and MEK, Ral and
RalGDS are secondarily affected through interactions.

change in expression, are called equally expressed
(EE) genes.

The DE genes that are directly affected by the
external perturbation [12] are denoted as primarily
affected genes. Rest of the DE genes that change
their expressions due to interactions with primarily
affected genes and each other through signaling and
regulatory networks [8, 9, 29, 33]. We call them
as secondarily affected genes. In this paper, the
term gene networks is used to refer signaling and
regulatory networks. Figure I shows the state of
the genes in the Pancreatic Cancer pathway after a
hypothetical external perturbation is applied [2, 35].
In this figure, genes K-Ras, Raf and Cob42Roc are
primarily affected and MEK, Ral and RalGDS are
secondarily affected through interactions.

We consider the problem of identifying the pri-
marily affected genes in a perturbation experi-
ment where gene expressions are provided before
and after the application of perturbation for a
set of samples. Existing methods to identify the
primarily affected genes using association analy-
sis techniques [18, 28], haplo-insufficiency profil-
ing [15, 14, 27] and chemical-genetic interaction
mapping [31] are limited to applications where
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additional information such as fitness based assays
of drug response or a library of genetic mutants
is available. Bernardo et al. suggested a regression
based approach, named MNI, that assumes that
the internal genetic interactions are offset by the
external perturbation [12]. It estimates gene-gene
interaction coefficients from the control data. It then
uses those coefficients to predict the target genes
in the non-control data. Cosgrove et al. proposed a
method named SSEM that is similar to MNI [8].
SSEM models the effect of perturbation by an
explicit change of gene expression from that of
the unperturbed state. These methods have several
limitations.

1) Lack of gene interaction data: They do not
employ regulatory or signaling (i.e. gene net-
works) to model gene-gene interactions. Since
gene networks are manually curated using do-
main experts, they are reliable sources of gene
interactions. Utilizing them has the potential to
more accurately solve the problem of identifying
primarily affected genes.

2) Limited perturbations: These methods are suit-
able when only a very small number of genes are
perturbed, e.g., the genetic perturbation experi-
ments are often designed for single gene pertur-
bations [18]. However, external effects such as
radiation can alter the expression of many genes
directly making the existing methods to be of
limited use.

3) Simplistic models: These methods provide only
the set of genes that are directly affected by
the perturbations and do not specify any error
bounds. However, a non-probabilistic inference
oversimplifies the problem especially in cases
when a small number of gene expression mea-
surements are available. As a result, these meth-
ods can overfit the data, making the solution
unreliable.

The method we propose in this paper addresses
these limitations. We assume that the underlying
gene network can be modeled as a directed graph
where each node represents a gene, and a directed
edge from gene a to gene b represents a genetic
interaction (e.g a activates or inhibits b). We define
two genes as neighbors of each other if they share
an edge. For example, in Figure I, genes K-Ras
and Raf are neighbors as K-Raf activates Ras. A
neighbor can be classified as incoming or outgoing

if it is at the start or at the end of the directed
edge, respectively. In Figure I, Raf is an incoming
neighbor of MEK and MEK is an outgoing neighbor
of Raf.
Contributions:
1) We propose a new probabilistic method to

find the primarily affected genes in microarray
dataset. Our method uses archived information
about gene networks as a prior belief in a
Bayesian framework. When the expression level
of a gene is altered, it can affect some of its
outgoing neighbors. Thus, the expression of a
gene can change due to external perturbation or
because of one or more of the affected incoming
neighbors. We build our solution based on this
observation. Let G = {g1, g2, · · · , gM} denote
the set of all genes.

2) We represent the external perturbation by a hy-
pothetical gene (i.e. metagene) g0 in our the gene
network. An edge from metagene the to all the
other genes implies that the external perturbation
has the potential to affect all the other genes. So,
g0 is an incoming neighbor to all the other genes.
We call the resulting network the extended gene
network. Our method estimates the probability
that a gene gj is DE due to an alteration in the
activity of gene gi (gi ∈ G∪{g0}, gj ∈ G) if there
is an edge from gi to gj in the extended network.
We use a Bayesian model in our solution with
the help of Markov Random Field (MRF) to
capture the dependency between the genes in the
extended gene network.

We optimize the pseudo-likelihood of the joint pos-
terior distribution over the random variables in the
MRF using Iterative Conditional Mode (ICM) [5].
The optimization provides us the state of the genes
and the pairwise causality among the genes includ-
ing the metagene.

Our experiments on both real and synthetic
datasets demonstrate that our method can find pri-
marily affected genes with high accuracy. We com-
pared our method with SSEM and Student’s t test
and obtained significant higher accuracy in finding
out the differentially expressed genes.

The rest of the paper is organized as follows.
In Section II we describe our method in detail. In
Section III we discuss the experiments and results.
Finally, in Section IV we describe our key conclu-
sions.
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II. METHODS

In this section we describe our method. Sec-
tion II-A presents the notations. Section II-B pro-
vides an overview of our solution. Section II-C
discusses the modeling of the MRF based prior dis-
tribution. Section II-D describes how we formulate a
tractable approximate version of the objective func-
tion. Section II-E discusses how we compute the
likelihood of the expression of a gene. Section II-F
explains how we optimize the objective function.

A. Notations and problem formulation

We start by describing the notation used in the
rest of this paper and provide a formal definition
of the problem. We use two types of parameters to
model this problem, namely observed and hidden.
The values of observed variables are available in
the given data set. We estimate the hidden variables
from the observed data.
Observed variables: There are two sets of ob-
served variables.
• Microarray dataset: We denote the number of

microarray samples and the number of genes by
N and M respectively. We represent the set of all
genes in the dataset with G = {g1, g2, · · · , gM}.
For each gene gi, the dataset contains the ex-
pressions before and after the perturbation (i. e.
control and non-control) respectively. We denote
the expressions of gi with yij and y

′
ij in con-

trol and non-control group respectively, (1 ≤
i, j ≤ M ). Let yi = {yi1, yi2, · · · yiN} and
yi
′

= {yi1′, yi2′, · · · yiN ′} denote the expression
values of gi in control and non-control groups
respectively. We use Yi to denote all the data
for gene gi in control and non-control groups
(i.e. Yi = yi ∪ y

′

i). Y =
⋃M
i=1 Yi represents the

collection of the entire gene expression data.
• Neighborhood variables: We use the term W =
{Wij} to represent if any two genes gi and gj are
neighbors. Wij (1 ≤ i, j ≤ M ) is set to 1 if gi is
incoming neighbor of gj (i.e. gj has an incoming
edge from gi in the extended gene network.) and
0 otherwise.

Hidden Variables: There are two sets of hidden
variables.
• State variables: Each gene gi can attain one of

the two states (i.e. DE or EE) We introduce the
variables S = {Si} to indicate the states of the

genes. Formally, Si is DE if gi is differentially
expressed and EE if gi is equally expressed.

• Interaction variables: We define the set of ran-
dom variables X = {Xij} to represent the joint
state of genes gi and gj (1 ≤ i ≤M , 1 ≤ j ≤ N ).
Formally,

Xij =

8>><>>:
1 if Si = DE and Sj = DE;
2 if Si = DE and Sj = EE;
3 if Si = EE and Sj = DE;
4 if Si = EE and Sj = EE;

It is evident that the value of Xij depends on
the value of two independent variables Si and
Sj . Note that the values of Xij are categorical
in nature.
Problem formulation: We have microarray ex-

pression data Y and the gene network {G,W}
as input to the problem. From now on, the gene
network {G,W} will be referred to as V . We would
like to estimate the posterior density p(Xij|X −
Xij,Y ,V ,Wij = 1). Specifically, a higher value
of p(X0j = 1|X − X0j,Y ,V ,Wij = 1) indicates a
higher chance that the gene gj is primarily affected,
as X0j = 1 indicates that both the metagene and gene
gj are DE. Based on this probability estimation, we
create a list of primarily affected genes.

B. Overview of our solution
An approach to solve our problem can be to

maximize a likelihood distribution over the gene
expression Y where X are the parameters of the
distribution. The objective is to obtain the maximum
likelihood estimate (MLE) of X . However, there
are two problems in this this approach. First, MLE
requires a large number of data points to accurately
estimate the parameters. Second, MLE depends only
on the observed data and cannot utilize domain
specific knowledge leading to overfitting of data and
poor generalization.

We develop a Bayesian framework for estimating
X that addresses the above-mentioned limitations of
the existing approaches. Bayesian approaches can
generally estimate the parameters with fewer data-
points, which makes our approach more suitable for
perturbation experiments [6].

We estimate the probability of Xij given the other
observed and hidden variables. In this approach, we
aim to maximize the joint density of the X variables
given the gene expressions Y and the gene network
V . Thus, the objective to maximize is given by,
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(a) Perturbation experiment

X X X X

XXX

X X X

X

 R2R1

R4

14 13
25

3523

R3 R5

12

(b) Markov random field graph

Fig. 2. (a) A small hypothetical gene network with perturbation.
The circle g0 represents the abstraction of the external perturbation
i.e. g0. Rectangles denote genes. → implies activation and a implies
inhibition. The dotted arrow from g0 indicates potential effect on each
genes. The directly impacted DE genes g1 and g3 are denoted by solid
rectangle. Dashed rectangles g4 and g5 imply secondarily impacted
DE genes. Dotted rectangle is for the EE gene g2. (b) The graph
for Markov random field created from the hypothetical gene network
in (a). For each neighbor pair we create a circular node. We create
three rectangular nodes that do not correspond to any neighbor pair,
however they are part of the MRF graph. Two nodes are connected
with an undirected edge if they share a subscript at same position
and the two genes corresponding to the other subscript interact in
the gene network. For example, node XR4 and X14 are connected
as they share 4 at second position.

P (X|Y,V, θY , θX) =
P (Y|X ,V, θY )P (X|V, θX)P
X P (Y|X ,V, θY )P (X|V, θX)

(1)

θY is the set of parameters for the likelihood
function P (Y|X , θY ) and θX is the set of parameters
for the prior density function P (X|θX). θX and
θY will be discussed in Sections II-C and II-E
respectively.

Since a direct optimization of Equation 1 is
impractical due to exponential number of terms
in the denominator, we define a more tractable
objective function as discussed in Section II-D. We
use iterative conditional mode (ICM) to optimize
the objective function and obtain an assignment of
X , θX and θY . Finally we estimate the posterior
probability p(Xij|X −Xij,Y , θX , θY ) for every Xij

when Xij = 1. Using this posterior probability, we
quantify the probability that one gene is DE due to
one of its incoming neighbor.

C. Computation of the prior density function
In this section, we describe how we build the prior

density function P (X|θX). We incorporate informa-

tion from biological networks as prior belief in this
density function. The following two assumptions
encapsulate our belief about the interactions of the
genes in the gene network.
1) Each gene can affect the expressions of its

outgoing neighbors. If the activity of a gene is
altered, the effect can propagate to its outgoing
neighbors.

2) The metagene g0 (i.e. external perturbation) can
affect the expression of every other gene. This
is easy to visualize as the external perturbation
such as radiation can change the activity of any
of the genes.

Clearly, when the data does not follow one or more
of the hypotheses, the optimization function can
overcome the prior belief with a strong support from
the data.

In order to compute the prior density function,
we define a Markov Random Field (MRF) over the
X variables [25]. MRF is a probabilistic model,
where the state of a variable depends only on the
states of its neighbors. MRF is useful to model
our problem as the states of genes depend on their
neighbors. Here, the MRF is an undirected graph Ψ
= (X , E), where X = {Xij} variables represent the
vertices of the graph (i.e. each interaction variable
Xij corresponds to a vertex). We denote the set
of edges with E = {(Xij, Xpj)|Wpi = Wij =
1} ∪ {(Xij, Xik)|Wjk = Wij = 1}. Thus, two
variables in X share an edge if they share a common
subscript at the same position and the two genes
corresponding to the other subscript interact in the
gene network. For example, in Figure 2(b), X35 and
X25 are neighbors, as they share 5 (i.e. gene g5) as
the second subscript and g2 and g3 interact in the
gene network in Figure 2(a).

One important point to note is that, this graph
does not use the state variables S to model the
dependencies between the genes. Rather, it estab-
lishes those dependencies over the X variables. For
example, in Figure 2(b) we draw the MRF graph
corresponding to the hypothetical gene network in
Figure 2(a). In the gene network, there is an edge
from g2 to g3. So, g2 can potentially change the
state of g3. We create an edge from X12 to X13

that corresponds to the edge from g2 to g3. As g1 is
common for X12 and X13, if they assume the same
value (i.e. X12 = X13), it implies that the genes g2

and g3 are in same state (i.e. S2 = S3). We formulate
these dependency constraints using a set of unary



5

TABLE I
THE TABLE ENUMERATES THE TRUTH VALUES FOR THE TWO

BINARY FEATURE FUNCTIONS. ONLY THE PERMITTED ENTRIES
ARE ANNOTATED WITH 0/1. THE BLANK ENTRIES CORRESPONDS

TO COMBINATIONS THAT ARE NOT POSSIBLE (A) F3(Xij)
REPRESENTS THE FEATURE FUNCTION FOR left equality. (B)

F4(Xij) REPRESENTS THE FEATURE FUNCTION FOR right equality.

Xpj Xik

Xij

1 2 3 4

Xij

1 2 3 4
1 1 0 1 1 0
2 1 0 2 0 1
3 0 1 3 1 0
4 0 1 4 0 1

(a) F3(Xij) (b) F4(Xij)

and binary functions called feature functions. We
discuss these feature functions next.

We denote the neighbors of Xij in the MRF graph
as X∗ij = {Xkj|Wki = 1} ∪ {Xip|Wjp = 1}. We
define a clique over each Xij and its neighbors
X∗ij by Cij provided Wij = 1. A feature func-
tion f(Cij) is a Boolean function defined over the
cliques Cij of Ψ. This function evaluates to 1 or
0, if it is satisfied or not, respectively. We define
a potential function ψ(Cij) corresponding to f(Cij)
as an exponential function given by exp(γf(Cij)).
Here γ is a coefficient associated with f(Cij) that
represents the relevance of f(Cij) in the MRF.
According to Hammersley-Clifford theorem, we ex-
press the joint density function of the MRF over X
as product of potential functions defined over that
MRF as, p(X|θX) = 1

∆

∏
Cij ,Wij=1 ψ(Cij) [17]. In

this formulation, ∆ is the normalization function
∆ =

∑
X

∏
Cij
ψ(Xij). To limit the complexity of

our model, we consider only cliques of size one and
two.

We define four feature functions to capture the
dependencies among the variables in X according
to the two hypothesis. Based on the number of input
variables, they are classified as unary and binary
feature functions.

Unary feature functions: A primary component of
the prior density function is modeling the frequency
of Xij itself. We capture this frequency using
two unary feature functions defined over singleton
cliques. We define a feature function F1(Xij, 1)
which returns one when Xij = 1 and 0 otherwise. To
capture the complemented events, we define another
feature function F2(Xij), which returns to 1 when
Xij = 0 and returns 0 otherwise.

Binary feature functions: These feature functions
are defined to incorporate the two assumptions
stated at the beginning of this section. Consider
a sequence of four genes g1, g2, g3 and g5 in
Figure 2(a). X23 is a variable in the MRF graph
that depends on the states of g2 and g3. X13 is a
neighbor of X23 in MRF graph as g1 is an incoming
neighbor of g3 in the gene network. Similarly, X25 is
a neighbor of X23 as g5 is an outgoing neighbor of
g3. If S1 equals to S2 then X23 = X13. Similarly
if S3 equals to S5 then X23 = X25. We capture
these events in two feature functions for Xij based
on the incoming neighbors of gi and the outgoing
neighbors of gj .
• Left equality: Let us denote the incoming neigh-

bors of gi with In(gi). We write a feature function
f3(Xpj, Xij), ∀p, gp ∈ In(gi). f3(Xpj, Xij) =
1 if Si = Sp and Wpi = Wij = 1. Otherwise,
f3(Xpj, Xij) = 0. We denote the summation of
this function over all the incoming neighbors of
gi as,

F3(Xij) =
X

p,Wij=1,Wpi=1

f3(Xij , Xpj).

• Right equality: Let us denote the outgoing
neighbors of gj as Out(gj). We define a fea-
ture function f4(Xik, Xij), ∀k, gk ∈ Out(gj).
f4(Xik, Xij) = 1 if Sk = Sj and Wjk = Wij =
1. Otherwise, f4(Xik, Xij) = 0. We denote the
summation of this function over all the outgoing
neighbors of gj as,

F4(Xij) =
X

k,Wij=1,Wjk=1

f4(Xij , Xik).

Table I enumerates the truth values of the binary
feature functions for different values of their ar-
guments. Only the permitted entries are annotated
with zero and one. The other entries require illegal
combination of argument values as explained in the
caption of the Table I.

In the binary feature functions Xkj or Xip may
not represent any interactions from the extended
gene network when Wkj = 0 or Wip = 0, respec-
tively. We represent them by rectangles in Fig-
ure 2(b).

Based on these feature functions, we define the
joint density function of X as,

p(X|θX) =
1

∆
exp(

X
i,j,Wij=1,k∈{1,2,··· ,4}

γkFk(Xij)) (2)
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In the above equation γk, k ∈ {1, 2, · · · 4} are the
coefficients of the four feature functions in MRF.
In the next section, we discuss how we define the
objective function with respect to the MRF. We also
describe how we formulate the posterior probability
density function for Xij .

D. Approximation of the objective function

A direct maximization of the objective function
given by Equation 1 is impractical, as it requires
evaluation of exponential number of terms in the
denominator. We employ pseudo-likelihood as an
established substitute to Equation 1 [4]. Pseudo-
likelihood is the simple product of the conditional
probability density function of the Xij variables.
Geman et al. proved the consistency of the maxi-
mum pseudo-likelihood estimate [13]. The approx-
imated objective function can be written as,

F = arg max
X

(
Y
i,j

Fij) (3)

We derive the posterior density function Fij of
Xij when Wij as,

Fij

= p(Xij |X −Xij ,Y, θX , θY ,Wij = 1)

=
p(Yi, Yj |Xij , X∗ij , θY ,Wij = 1)p(Xij |X −Xij ,Y, θX ,Wij = 1)P

Xij∈{1,··· ,4} p(Yi, Yj |Xij , X
∗
ij , θY ,Wij = 1)

(4)

There are two different terms in objective func-
tion of Equation 4. p(Xij|X −Xij,Y , θX , θY ,Wij =
1) stands for the conditional prior density function
of Xij which can be derived from Equation 2 using
Bayes rule. We discuss p(Yi, Yj|Xij, X

∗
ij, θY ,Wij =

1), the likelihood function in the next section.

E. Calculation of likelihood density function

In this section, we describe how we derive the
likelihood function. In the following, we assume
that gene expressions in a group follow a normal
distribution, We can rewrite the derivations if gene
expressions follow other distribution.

Consider a set of measurements for a gene gi
that follows a single Gaussian distribution by zi =
{zi1, zi2, · · · , ziN}. We denote the latent mean of zi

as µ and the standard deviation as σ. As different
genes can have different average expressions, we

assume that µ follows a genome-wise normal distri-
bution with mean µ0 and standard deviation τ [24].
Thus, for zi, the likelihood for the data points in
that group is given by,

L(z|µ0, σ
2, τ2) =

Z
[

nY
i=1

N (zi|µ, σ2)]N (µ|µ0, τ
2)dµ

=
σ

(
√

2πσ)n
√
nτ2 + σ2

exp(−
P
i z

2
i

2σ2
− µ2

0

2τ2
)·

exp(
τ2n2z2

σ2 +
σ2µ2

0
τ2 + 2nzµ0

2(nτ2 + σ2)
)

(5)

The reader can find the derivation of Equation 5
in Demichelis et al [11].

If a gene is DE, its expression measurements in
control and non-control groups follow separate dis-
tributions. On the other hand, for equally expressed
genes, all the measurements in both the groups share
the same mean.The joint data likelihood for a DE
gene is given by,

L(gi) =

(
L(yi|µ0, σ

2, τ2)L(y
′
i |µ0, σ

2, τ2), if Si = DE.
L(yi ∪ y

′
i |µ0, σ

2, τ2), if Si = EE
(6)

Now we are ready to derive the joint likelihood
distribution for different values of Xij . Let us denote
the set of parameters {µ, σ, τ} by θY .

We have four different forms for the likelihood
of Xij due to four different values it can assume.
However, we shall derive only for Xij = 1, as for
the other values of Xij we have a similar derivation.

p(Yi, Yj |Xij = 1, X∗ij , θY ,Wij = 1)

=
X

τi,τj∈{DE,EE}

p(Yi, Yj |Si = τi, Sj = τj , θY ,Wij = 1)·

p(Si = τi, Sj = τi|Xij = 1, X∗ij , θY ,Wij = 1)

(7)

From the definition of Xij , p(Si = τi, Sj =
τi|Xij = 1, X∗ij, θY ) equals to 1 when Si = DE
and Sj = DE. Its value is zero for all other values
of Si and Sj . So, continuing from the last step of
Equation 7,

p(Yi, Yj |Xij = 1, X∗ij , θY ,Wij = 1)

= p(Yi, Yj , YBj |Si = DE,Sj = DE, θY ,Wij = 1)

= p(Yi|Si = DE,Sj = DE, θY )·
p(Yj |Si = DE,Sj = DE, θY )

= p(Yi|Si = DE, θY )p(Yj |Sj = DE, θY )

= L(gi)L(gj)
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In a similar way, we can derive the likelihood
functions for the other three values of Xij variable.
A special case arises when gi is the metagene, i.e.
g0. Specifically, L(g0) = 1 if S0 = DE, 0 otherwise,
as, according to our assumption the metagene is
always DE.

F. Objective function optimization
So far, we have described how we compute the

posterior density function. The final challenge is to
find the values of the hidden variables that maximize
the objective function (Equation 3). We develop an
iterative algorithm to address this challenge.

In our model we have three different sets of
parameters. The nodes of the MRF given by X
consist of one set. Other two sets are the parameters
of conditional probability density function of Xij

and likelihood function of observed data given by
θX = {γ1, · · · γ4} and θY = {µ0, σ, τ ), respectively.
In each iteration, we first estimate θX and θY
based on the estimated value of X in the previous
iteration. Next, based on the estimated parameters,
we estimate X that maximize the objective function
in Equation 3.

The likelihood function is non-convex in terms
of the parameters θY = {µ0, σ , τ ). Also, the
conditional density is non-convex in terms of θX =
{γ1, · · · γ4}. We use a global optimization method
called differential evolution to optimize both of
them [37]. To optimize the objective function in
equation 3, we employ the ICM algorithm described
by Besag [5]. Briefly, our iterative algorithm works
as follows.
1) Obtain an initial estimate of S variables. In our

implementation we use student’s t-test assuming
the data follows normal distribution. We use 5%
confidence interval for this purpose.

2) Estimate parameters θY that maximizes the data
likelihood function given by,

arg max
θY

∏
Xij

p(Yi, Yj|Xij, X
∗
ij, θY ,Wij = 1)

We implement this step using Differential Evo-
lution, which is similar to the genetic algorithm.

3) Calculate an estimate of the parameters θX that
maximizes the conditional prior density function
by,

arg max
θX

∏
Xij

p(Xij|X − {Xij}, θX ,Wij = 1)

We also implement this step using Differential
Evolution.

4) Carry out a single cycle of ICM using the current
estimate of S, θX and θY . For all Si, maximize∏

Xmn
p(Xmn|X − Xmn,Y , θX , θY ,Wmn = 1)

when Xmn ∈ {Xrt|r = i or t = i} and Wrt

= 1.
5) Go to step 2 for a fixed number of cycles or until
X converges to a certain predefined value.

We optimize the objective function in terms of
the Si (1 ≤ i ≤ M ) variables instead of Xij

variables. Specifically, in step 4, we go over all
the Si variables, and optimize Fij function (given
by Equation 4) for only those Xij variables that
are impacted by the change of Si. The optimiza-
tion procedure is guaranteed to converge since in
every iteration the value of the objective function
increases. We continue the iterative process, until
the changes in estimates of the parameters between
two consecutive iterations reach below a certain
cutoff level.

III. EXPERIMENTS

In this section we discuss the experiments we
conducted to evaluate the quality of our method.
We implemented our method in MATLAB and Java.
We obtained an implementation of Differential Evo-
lution from the http://www.icsi.berkeley.edu/∼storn/
code.html. We compared our method with SSEM [8]
as SSEM is one of the most recent methods that
can be used to solve the problem considered in this
paper. We obtained SSEM from http://gardnerlab.
bu.edu/SSEMLasso. We ran our code on a AMD
Opteron 2.4 Ghz workstation with 4GB memory.
Dataset We use the dataset collected by Smirnov et
al. [34]. It was generated using 10 Gy ionizing radi-
ation over immortalized B cells obtained from 155
members of 15 Centre d’tude du Polymorphisme
Humain (CEPH) Utah pedigrees [10]. Microarray
snapshots were obtained at 0th hour (i.e., before the
radiation) and 2 and 6 hours after the radiation. We
adapt the time series data to create the control and
non-control data for our experiments. We use the
data before radiation as control data. For the non-
control data we calculate the expected expressions
of a gene at each points after the radiation. We select
the one with higher absolute difference from the
expected expression of control data for that gene.
This dataset is used in the experiments described
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TABLE II
LIST OF TOP 25 GENES THAT ARE MOSTLY AFFECTED BY

EXTERNAL PERTURBATION. THE DATASET WAS GENERATED
USING 10 GY IONIZING RADIATION OVER IMMORTALIZED B

CELLS OBTAINED FROM 155 MEMBERS OF 15 CENTRE D’TUDE DU
POLYMORPHISME HUMAIN (CEPH) UTAH PEDIGREES [10].

GENES ARE TABULATED ROW-WISE, IN INCREASING ORDER OF
RANKING.

PGF IL8RB FOSL1 F2R PPM1D
MDM2 CDKN1A TNC PLXNB2 EPHA2
DDB2 TP53I3 PLK1 TNFSF9 ADRB2

MAP3K12 JUN SORBS1 LRDD MDM2
SDC1 MYC PRKAB1 EI24 DDIT4

in Sections III-A and III-B. For the experiments
described in Sections III-C and III-D, we derive new
datasets using this data. The details of this process
can be found in corresponding sections.

We also collect 24,663 genetic interactions from
the 105 regulatory and signaling pathways of KEGG
database [23]. Overall 2,335 genes belong to at least
one pathway in KEGG. We consider only the genes
that take part in the gene networks in our model.

A. Evaluation of biological significance
In this section, we investigate the support in ex-

isting literature for susceptibility to radiation based
perturbation for the primarily affected genes found
by our method. We train our method on the dataset
described above. After the optimization we rank
each gene gj in decreasing order of L(g0)L(gj),
where L(gj) is given by Equation 6. We tabulate
the top 25 genes in Table II.

Nine out of the ten highest ranked genes have
significant biological evidence that they are im-
pacted by radiation. Imaoka et al. [20] compared the
gene expression between normal mammary glands
to spontaneous and γ-radiation induced cancerous
glands of rat. The PGF (parental growth factor) gene
showed differential expression in both spontaneous
and irradiated carcinomas. Nagtegaal et al. [30]
applied radiation to human rectal adenocarcinoma
and compared the gene response to that of normal
tissues. The cytokines and receptor IL8RB showed
differential expression between normal and irradi-
ated rectal tissues. Amundson et al. [1] admin-
istered γ-radiation to p-53 wild type ML-1 hu-
man myeloid cell line. FOSL1 (known by FRA1
that time) showed differential expression as the
stress response. Lin et al. [26] applied ionizing
radiation on human lymphoblastoid cells. F2R, a
coagulation factor II receptor, was upregulated in

that experiment. Jen et al. [22] investigated the
effect of ionizing radiation on the transcriptional
response of lymphoblastoid cells in time series
microarray experiments. PPM1D, a gene related to
DNA repair, showed response to both 3Gy and 10Gy
radiation. Wu et al. [39] conducted a high dose
UV radiation experiment to observe the relation
between MDM2 gene on p53 gene. Their experi-
ment revealed that initially both protein and mRNA
level of MDM2 increases in a p53 independent
manner, which clearly substantiated the direct effect
of radiation on MDM2. Jakob et al. [21] irradi-
ated human fibroblasts with accelerated lead ions.
Confocal microscopy discovered a single, bright
focus of CDKN1A protein in the nuclei of human
fibroblast within 2 minutes after radiation. Rieger
et al. [32] applied both ultra violet and infrared
radiation on fifteen human cell lines and observed
that PLXNB2 was up-regulated for both kind of
radiations. Zhang et al. [40] reported that EPHA2
worked as an essential mediator of UV-radiation
induced apoptosis.

This experiment demonstrates that we find suf-
ficient support in existing literature that the top
ranked genes found by our method (i.e. highly likely
to be primarily affected) are affected by radiation.

B. Evaluation of the rankings of neighbor genes
Recall that our goal is to find the primarily

affected genes. We achieve this objective by com-
puting the probability for each DE gene to con-
tribute towards the change in the expression of its
outgoing neighbors. In this experiment, we evaluate
our success in terms of how accurately we rank the
contribution probabilities of the genes as discussed
in the next paragraph.

We divide the dataset of 155 samples into training
and testing set in 2:1 ratio. We create a ranked list
for each DE gene as follows. For each DE gene,
we sort its incoming DE neighbors in decreasing
order of their data likelihood probability with re-
spect to the outgoing neighbor. For example, let us
assume g1 is DE. It has four incoming DE neighbors
g2, g3, g4 and g0 where g0 is the metagene. Let
NLij denotes the normalized likelihood function

p(Yi,Yj |Xij=1,X∗ij ,θY )P
Xij∈{1,2,3,4}

p(Yi,Yj |Xij ,X∗ij ,θY )
of Xij . For instance, If

NL01 ≥ NL41 ≥ NL21 ≥ NL31, then the sorted
list is {g0, g4, g2, g3}. We denote the sorted list as
a ranking of the incoming DE neighbors. Let us
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Fig. 3. Frequency of average distance of rankings over training and
testing data. The figure shows that the difference is very close to zero.
This suggests that our method can rank the probabilistic effect of the
incoming neighbors of the genes with great precision. The average
difference between the ranks obtained in the training and the testing
data is less than one position in 92.7% of the cases.

denote the position of a gene gi in the ranking of
gj for training data ρgj(gi). We create another set of
rankings from the testing data likelihood probability.
Let us denote the position of gi in the ranking of gj
from testing data by ρ′gj(gi). For a gene gj we define
the average ranking distance between training and

testing data as δ(gj) =

P
gi∈IN(gj)

abs(ρgj (gi)−ρ
′
gj

(gi))

|IN(gj)| ,
where IN(gj) is the set of incoming DE neigh-
bors for gi, abs(.) denotes the absolute value and
|IN(gj)| stands for the cardinality of IN(gj).

We calculated the average ranking distance for all
the genes that have incoming neighbors apart from
the metagene. This experiment was repeated three
times with a different set of training and testing data.
We create a histogram for the average differences
from the three experiments in Figure 3. It shows that
the difference in average ranking distance is very
close to zero. The average difference between the
ranks obtained in the training and the testing data is
less than one position in 92.7% of the cases. Thus,
we have demonstrated that we can accurately rank
the contribution probabilities of incoming neighbors
for DE genes in test dataset based on the model
parameters learned from the training dataset.

C. Comparison to other methods

In this section, we compare the accuracy of our
method to that of SSEM and a simpler method
Student’s t test.
Synthetic data generation: We simulated real
perturbation events to prepare synthetic data with
known primarily and secondarily affected genes in a
controlled setting. We use the gene network derived

from KEGG first to select a random gene from the
network and denote it as a primarily affected DE
gene. We traverse the ancestors in a breadth fast
manner. For each of the ancestor, we made it a
secondarily affected DE gene with a probability of
1 − (1 − q)η, where η is the number of incoming
DE neighbors. Here q (0.4 in our experiments) is
the probability that a gene is DE due to a DE
predecessor. We repeat these steps to create the
desired number of primarily affected genes. After
the classification of the genes we create control
and non-control data for each of them for over N
patients. We use the control part of the real dataset
in Smirnov et al. [34] as the control part of our syn-
thetic dataset. To generate the non-control dataset,
we traverse each of the genes that participate in
the gene networks. Suppose, for a gene gi, the
mean and standard deviation of its expression in the
control dataset are given by µi and σi respectively.
If the gene is EE we generate its non-control data
points from the a normal distribution given by the
parameters (µi, σ2

i ). If the gene is DE, we use the
same variance as that of the control group. However,
we use a different mean. For the primarily and
secondarily affected genes we use µ

′
i = µi ± dp

and µ′i = µi ± ds respectively, where dp > ds.
Experimental setup: Given an input dataset, using
each of the three methods, we ranked all the genes.
Highly ranked genes have higher chance of being a
primarily affected gene according to each method.
We explain how we do the ranking in the following.
• Our method: We sort the genes in decreasing

order of joint likelihood with the metagene. A
higher joint likelihood implies a higher chance of
being primarily affected.

• SSEM: We train SSEM on the control dataset,
where it learns the correlation between the genes.
We test SSEM on the non-control dataset, where
it produces a rank for each single data point.

• Student’s t test: We used the function called
ttest2 from MATLAB. We apply it on every
individual gene, where it takes control and non-
control dataset as input and produces a p-value
as output. By default, null hypothesis is that “the
differences of two input data set are a random
sample from a normal distribution with mean 0
and unknown variance, against the alternative that
the mean is not 0”. Thus, the null hypothesis
corresponds to the assumption that the gene is EE.
So a substantially lower p-value implies a higher
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(a) Gap = 0.2 ×σ
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(b) Gap = 0.6× σ

Fig. 4. Comparison of our method to SSEM and t-test. The number
of primarily affected genes is 50. The gap between the mean of
primarily affected and secondarily affected genes are 0.2 to 0.6 ×σ,
where σ is estimated from the real dataset. The figures indicate that
our method outperforms SSEM and t-test.

chance of being primarily affected. We performed
the test on all the genes and rank them according
the increasing order of p-values.
Let us assume the set of primarily affected genes

as PG and first k elements of the ranking as RGk.
We define the sensitivity of the ranking at position
k by ηk = |PG∩RGk|

|PG| . Thus, a higher value of ηk
denotes a higher sensitivity. We prepare a sensitivity
vector {η1, η2, · · · η|R|}, by arraying the sensitivity
of a ranking at all the positions of the ranks.
Here, |R| denotes the cardinality of the ranking.
For SSEM we obtain a sensitivity vector for every
data points in the non-control dataset. We create a
consolidated sensitivity vector by averaging them.
Results: We conducted experiments by for ds−dp

σ
=

{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 1.75}, number of
primarily affected genes = {10, 50} and number of
data points = {10, 20, 40, 60, 80, 100, 125, 155}.
Here, σ corresponds to the standard deviation of
the expressions of genes in the dataset. However,
due to space limitation we discuss only two of
them in this paper (see Figure 4). The results we
discuss correspond to the case when we have 40

primarily affected genes and 155 data points. The
results of the other experiments are similar to those
in Figure 4(b).

Figures 4(a) and 4(b) show the sensitivity of the
three methods when (ds − dp) = 0.2 ×σ and 0.6
×σ respectively. The former one corresponds to
the computationally harder case as the difference
between the control and non-control datasets is
small. As the gap between ds and dp increases
identifying primarily affected genes becomes easier.

From the figure, we observe that our method
is significantly more sensitive than the other two
methods for all datasets consistently. It reaches
high sensitivity (more than 90%) using the top 150
ranked genes when the gap is small, and using the
top 50 genes as the gap increases to 0.6 ×σ. The
results were similar for larger gap values (results
not shown). The t test reaches around 40% and
50% sensitivity at 200 ranking position respectively.
SSEM’s sensitivity is below 0.25 for all experiments
even within the top 200 positions.

We believe that there are two major factors
for improved results using our method. First, our
method can successfully incorporate the gene in-
teractions while other methods ignore this infor-
mation. Second, our method is capable of dealing
with a broad range of primarily affected genes
while other methods’ performance deteriorates as
this number grows. In real perturbation experiments,
often multiple genes are primarily affected. Thus,
we conclude that our method is more suitable for
real perturbation experiments.

D. Sensitivity to the gap between primary and sec-
ondary effects

The experiments over the real dataset suggest the
validity of our model. One question however follows
from these experiments. How does our method
compare when we vary the distinction between
primarily and secondarily affected genes in terms of
their gap between control and non-control data. To
answer this question we conducted experiments on
synthetic datasets, where we change the differences
between primarily and secondarily affected genes
and compare our the accuracy of our method with
SSEM and student’s t test.
Synthetic data generation: We generate the data in
the presence of a hypothetical perturbation to simu-
late the real dataset. The primarily and secondarily
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Fig. 5. Comparison of accuracies with SSEM and Student’s t test
while varying the ratio of gaps of primarily and secondarily affected
genes. For a category of gene, the gap denotes the absolute difference
of average expressions in control and non-control groups. The x-axis
represents the ratio of gaps of primarily and secondarily affected
genes. The y axis denotes the accuracy of our method as described
inn Section III-D The figure demonstrates that our method obtains
very high accuracy except when the ratio equals to zero, i.e the gap
is equal for both the primarily and secondarily affected genes.

affected genes are ascertained in the way described
in Section III-C.

To utilize the real dataset to maximum possible
extent, we employ an innovative approach. Let us
denote the mean of gene gi in the control and non-
control by µi and µ

′
i, respectively. We subtract the

difference (µ′i − µi) from all the expressions in the
non-control group of gi. We repeat this subtraction
for all the genes. Once the non-control group is lev-
eled to control group, we re-modify the non-control
expressions of DE genes. If a gene is primarily DE
according to the decided set of genes, we increase
or decrease its expression over the data points in
non-control group by dp. Similarly, we modify the
expression value by ds, if the gene is secondarily
affected. Here, dp is greater than ds.
Results: We created three different sets of data
by varying dp and ds. For all the datasets the
number of primarily affected genes was 40. For
every dataset, we used different values of dp given
by {0.8, 1.2, 1.6}×σ, respectively. However, within
a dataset dp was fixed and ds/dp ratio was varied
as {0.1, 0.2, · · · 1.0}. We discuss only the result for
the dataset dp = 0.8 × σ as the results for the
other are similar. The accuracy of the methods can
fluctuate for different set of affected genes. Hence,
for a particular value of ds and dp we repeated the
experiment five times with different sets of affected
genes and averaged the result.

We run the three methods on all the datasets and

extract ranks of genes as described in Section III-C.
A higher position in the rank indicates a higher
chance of being primarily differentially expressed.
Let the set of true primarily affected genes be
PA. Let RG be the set of first |PA| genes from
the rank produced by a method, where |PA| is
the cardinality of PA. We define accuracy of that
method as |PA∩RG||RG| .

Figure 5 depicts the result from this experiment.
It is clear that our method outperforms SSEM all
the time. The accuracy of our method is substan-
tially better than Student’s t test for all the cases
except when the ratio ds/dp equals to one. From
this experiment, we can conclude that our method
performs very well over a wide range of difference
between the non-control groups for primarily and
secondarily affected genes. Specifically, for the case
where these groups have the same mean, our method
perform almost as well as other methods.

IV. CONCLUSION

In this paper, we considered the problem of
identifying primarily affected genes in the presence
of an external effect that can perturb the expressions
of genes. We assumed that we were given the ex-
pression measurements of a set of genes before and
after the application of an external perturbation. We
developed a new probabilistic method to quantify
the cause of differential expression of each gene.
Our method considers the possible gene interactions
in regulatory and signaling networks, for a large
number of perturbations. It uses a Bayesian model
with the help of Markov Random Fields to capture
the dependency between the genes. It also provides
the underlying distribution of the impact with con-
fidence interval.

Our experiments on both real and synthetic
datasets demonstrated that our method could find
primarily affected genes with high accuracy. It
achieved significantly better accuracy than two com-
peting methods, namely SSEM and the student’s t
test method.

Our method produces a probability distribution
rather than a fixed binary decision. The major
advantage of this approach is that it augment every
decision with a range, and hence endows it with a
confidence. A distribution is most of the time more
useful, as is it models the very stochastic nature of
gene interactions.
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