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Abstract

Executable biology is a discipline that is concerned with turning the specifications of
a biological system into a computational model that can be simulated under different con-
ditions to produce predictions about the behavior of the system. In this paper, we propose
a computational framework consisting of a generalized execution strategy for signaling
networks as well as a method for learning executable models from connectivity-maps and
proteomic data pertaining to a specific signaling network. We call these data sources semi-
quantitative because often they characterize the behavior of the system without providing
reliably exact numerical measurements. To the best of our knowledge this is the first use
of semi-quantitative data for building predictive models of biochemical systems.

Using our framework, we generate an executable model of a network of signaling path-
ways downstream of the epidermal growth factor receptor (EGFR) in the MCF-7 cell line.
Using this executable model, we determine that our method performs as well as existing
methods while using orders of magnitude less training data to achieve a comparable degree
of accuracy.

1 Introduction
Within the domain of executable biology, an area of ongoing research and innovation concerns
how to build executable models from biological data [1]. In this paper, we present a new mod-
eling framework that uses connectivity maps and proteomic measurements to build executable
models of signaling networks. We collectively call these data sources semi-quantitative be-
cause such data sets are often generated to the level of resolution that can identify trends, but
not exact numerical quantities within the biological system (though it is important to note that,
when desired, biologists can generate more precise measurements, though the effort can be
significant and costly).

Our execution strategy features a simplified discrete-time representation of signal propaga-
tion in which each protein has a degradation rate parameter and each interaction has a weight
parameter that abstractly models both strength and speed. The model for a specific signal-
ing system is derived from an input connectivity map of protein interactions in the system.
The model’s parameter values are determined by solving a non-linear optimization problem
in which values are indirectly constrained by semi-quantitative proteomic measurements taken
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from a set of perturbation experiments. Beyond building computational models, this approach
has two distinct benefits.

First, our method’s use of perturbation experiments to learn parameter values makes it pos-
sible for biologists to build cell-specific executable models for systems of interest. Second,
models can be derived and parameterized in an automated fashion from existing data, making
large-scale data analysis possible using pre-existing data sets and output from high-throughput
technologies.

We validate our method by building a predictive model of a network of signaling pathways
downstream of EGFR in the MCF-7 cell-line using previously published experimental results
[2]. The trained model correctly predicts the effect of a perturbation on a protein’s activity-
level 85.7% (60 out of 70) of the time. This high success-rate is particularly favorable when
compared with the method in [2] which trained on 20 perturbation experiments from the same
data set (as opposed to the 3 used by our method) in order to achieve the same level of accuracy.
Note that training a model to have 100% accurate predictions is often complicated by the fact
that a priori knowledge used to bootstrap the model may itself be incorrect or incomplete. This
is the case with the EGFR network we consider in this paper: the 10 inconsistencies between
the experiments and our model’s predictions suggest that the dynamics of several components
of the Ras pathway may be influenced by factors besides those present in the model.

Additionally, in a closer investigation of the model constructed by our method, we find
that paths with the strongest weights correspond to interactions with known significance in
the MCF-7 cell-line. This suggests that executable models constructed by our method can be
not only predictive, but also descriptive of the underlying signaling mechanisms which can be
useful to biologists in better understanding the structural and dynamic properties of a signaling
network that determine aspects of its behavior.

2 Materials and Methods
2.1 A simplified model of signaling network dynamics
Dynamic models of biochemical systems fall into two classes: continuous-time and discrete-
time. Continuous-time schemes typically model the behavior of the system as a first-order
differential equation dY

dt
= f(Y (t)), where Y (t) is a vector containing the values of the state

variables at time t. The trajectory that the system state vector follows at time t is determined
by some function of the current state, f(Y (t)).

Discrete-time models, in contrast, explicitly break time into a series of steps in which the
behavior of the system is expressed as the inductive formula:

Yt+1 = f(Yt) (1)

where f(x) is the transition function that evaluates to the next state visited after x. Often such
discrete-time models are linear in the system state variables, in which case the state transition
formula can be rewritten Yt+1 = AYt, where A is the transition matrix. In models of metabolic
networks, A corresponds to the stoichiometric matrix. This correlation does not extend to
signaling systems, however, since the underlying biochemical reactions are rarely explicitly
modeled. Regardless of the interpretation of A, a given state variable yi

t+1 is determined by

yi
t+1 =

∑
1≤j≤|Y |

ai,jy
j
t

where ai,j is the element ofA at row i, column j. Thus, the system’s next state depends entirely
upon the current state and the elements of A. These ai,j are the parameters of the system. Once
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the values of these have been determined and a starting condition, Y0 has been specified, the
model is complete.

Though continuous-time models seem to express the biochemical processes more accu-
rately (the underlying system is spatially and temporally continuous in nature), discrete-time
models enjoy a number of practical advantages over continuous-models that can make them the
better suited for certain types of problems: (1) though the underlying biochemical systems may
be continuous, time-series data is inherently discrete, representing one or more time points at
which the state of the system was observed; (2) the inductive structure of Equation 1 makes it
easy to derive the state space of the system; and (3) Equation 1 allows the explicit derivation of
the finite sequence of states visited given a starting state and a number of time steps.

The third property is of particular interest to us here as we use the finiteness property of this
sequence to efficiently find parameter values for a model that satisfy certain semi-quantitative
properties. In order to take advantage of this finite state sequence property, we build a discrete-
time model of a signaling network with the form:

yi
t+1 = max(δiy

i
t +

∑
j∈Ai

wj,iy
j
t −

∑
j∈Hi

wj,iy
j
t , 0). (2)

State variable i corresponds to the activity-level of a signaling protein, δi is the degradation rate
of that protein, Ai are other proteins in the system that activate i, and Hi are other proteins in
the system that inhibit i. Since Ai and Hi specify the proteins that interact directly with i, the
Ai’s and Hi’s for all i’s in the system constitute the connectivity of the system—the directed
interactions that connect the proteins in the system together. The parameter wj,i denotes the
strength of the effect that j has on i through the interaction that connects them. When the
parameters δi and wi,j are specified and a starting point is selected, the resulting system can be
simulated by iteratively evaluating the state equations for increasing values of time, t. Models
similar to this have been used to capture transcriptional dynamics (e.g., [3, 4]).

Note that the model shown in Equation 2 is effectively a system of linear discrete mathe-
matical formulae with discontinuities at zero. Within this project, we consider it an executable
model for two reasons. First, and most fundamentally, we use the state equations to execute
the model precisely as expressed using a computer (making this model one that is ‘executed’).
This is different from other mathematical models, such as ODEs, which are simulated, meaning
that their behavior is approximated by computational evaluation. Second, as will be discussed
in later sections, we select parameters values for the model by treating it as a computational
model.

2.2 Semi-quantitative data from perturbation experiments
To determine values for δi and wi,j , we require semi-quantitative data from perturbation ex-
periments. A perturbation experiment activates or inhibits the function of one or more pro-
teins (called targets) through the use of various mechanisms such as drugs, gene knockouts, or
siRNA. These perturbations have varying effects on the response of other proteins and cell phe-
notypes to signaling events. For a given signaling protein, the perturbation’s effect is measured
by comparing the activity-level of that protein in an unperturbed cell to the activity-level of the
same protein under the perturbed condition. Ordinarily the cell is stimulated prior to measuring
the activity-levels in order to determine how the perturbed protein(s) influence the signal that
reaches other proteins.

Given the unperturbed and perturbed activity-levels for proteins X , Y , and Z (Xu and Xp,
Yu and Yp, Zu and Zp, respectively), we can make semi-quantitative assertions about the effect
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of the perturbation on the activity-level of each protein: Xu < Xp if X increased in response
to the perturbation, Yu > Yp if Y decreased, and Zu = Zp if Z exhibited no change.

It is possible to make many other kinds of semi-quantitative assertions about the experi-
mental results. For example, the biologist may observe that the perturbed concentration of Z
is greater than that of Y : Zp > Yp; or that the unperturbed value of Z appears to be two times
that of X: Zu = 2Xu. In fact, any observations taking such forms can be used to constrain the
parameter values of the model. However, using such constraints must be done with great care
since comparison across protein types and conditions may not be meaningful due to differing
concentrations and measurement accuracy for various protein types.

However, for the remainder of this paper, we consider (without loss of generality) the three
fundamental assertions: Yu < Yp, Yu > Yp, and Yu = Yp as the types of semi-quantitative data
that constrain the training process.

2.3 Training a model using semi-quantitative data
Given the connectivity for a signaling network of interest—the sets Ai and Hi for all proteins
i in the system—we designed a training method that takes a set of semi-quantitative data from
perturbation experiments and infers values for the parameters δi andwi,j that make the resulting
model reproduce the maximum number of semi-quantitative behaviors specified possible (when
the appropriate perturbed conditions are simulated).

Our method works by converting the model and the semi-quantitative data into a series of
constraints for a non-linear optimization problem. The optimization algorithm is directed to
find values for all δi and wi,j such that the model’s behavior satisfies as many semi-quantitative
data constraints as possible.
2.3.1 Modeling perturbation experiments
Note that a perturbation experiment can be characterized as the set of inhibited proteins, P ⊆ P.
The perturbed signaling network is structurally the same as the unperturbed network except
where the perturbation has its effect. As a result, the state equations of the perturbed network,
SP , are largely the same as those in the unperturbed network, S0:

SP [i] :=

{
S0[i] if i 6∈ P

yi
t+1 = 0 if i ∈ P

where SX [i] is the state equation for protein i under condition X (the set of inhibited proteins).
Given the state equations for a perturbation experiment, SP , and the unperturbed signaling

network, S0, we can compute the semi-quantitative change in protein i’s activity-level due to
the perturbation by simulating both networks from some initial state Y0. The predicted semi-
quantitative change in protein i is:

q̂P
i =


< if ∆P

i < −ε
> if ∆P

i > ε
= if − ε ≤ ∆P

i ≤ ε

where ∆P
i =

∑
0≤t≤T (S0[i, t] − SP [i, t]) is the difference in the activity-level of protein i

over the time of the simulation between the unperturbed (S0) and perturbed (SP ) conditions
(SX [i, t] denotes the value of the state equation for protein i at time t under condition X). The
ε parameter is incorporated into the definition in order to desensitize the measure to extremely
small, probably insignificant, changes (e.g., ∆P

i = 10−12 most likely does not indicate a change
of any significance).
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2.3.2 Training a model using semi-quantitative data from perturbation experiments
To train a model, S0, a set of perturbation experiments, P = {P1, P2, ..., Pn} and semi-
quantitative perturbation experiment observation,Q = {(x1, p1, q1), (x2, p2, q2), ..., (xR, pR, qR)},
are provided. Each perturbation experiment Pi ⊆ P. A semi-quantitative perturbation ex-
periment observation, (x, p, q) ∈ Q specifies the response of protein p to perturbation Px:
q ∈ {<,>,=} indicates the way that the activity-level of protein p changed in response to
perturbation Px with respect to the unperturbed system S0.

The objective of the training procedure is to select an initial condition, Y0, degradation
rates, δi, and interaction weights, wi,j , such that when the original and perturbed systems are
simulated (S0 and SP1 , SP2 , ..., SPn , respectively), q̂Px

p = q is true for as many semi-quantitative
results, (x, p, q) ∈ Q, as possible.

As with most training procedures, ours is a search for parameter values that cause the model
to which they belong to behave in a certain way. We formalize the parameter search as a non-
linear optimization problem in which the parameters are free variables constrained by (1) the
state equations in S0 and SP , (2) the semi-quantitative behavioral assertions, Q, and (3) a set
of logical constraints: 0 ≤ δi ≤ 1 (the activity-level of a protein can never fall below zero), and
wi,j ≥ 0 (the effect of a protein can not be negative)1.

In order to build the non-linear optimization problem, a simulation time, T , must be speci-
fied. Optionally, a set of weights for individual constraints can be specified Ω = {ω1, ..., ω|Q|}.
Conceptually, these weights can be used to make the optimizer favor satisfying certain con-
straints over others. If Ω is not specified, all constraints are assumed to be equally important
(i.e. ωi = 1 for all 1 ≤ i ≤ |Q|). The problem is then constructed as follows:

• Free variables

– S0[i, t] - the activity-levels for each protein, 1 ≤ i ≤ N , for each time step, t ∈
{0, 1, ..., T}, in the original network

– SPk [i, t] - these are the activity-levels for each protein, 1 ≤ i ≤ N , for each time
step, t ∈ {0, 1, ..., T}, in the network corresponding to the perturbation experiment,
Pk

– 0 ≤ δi ≤ 1 - the degradation rate of each protein

– wi,j ≥ 0 for all interactions - the interaction weight of each edge in the network

– X[r] ∈ {0, 1} for all semi-quantitative data constraints 1 ≤ r ≤ R.

• Constraints

– State equations for the unperturbed and perturbed networks: S0 and SPi for Pi ∈ P

– Semi-quantitative changes due to perturbations as characterized in Q:

∗ The following rule is produced for all rules (xr, pr,‘<’): (proteins that in-
creased in response to the perturbation)

X[r]

(
T∑

t=0

S0[pr, t]−
T∑

t=0

SPxr [pr, t]

)
< X[r](−εr)

1It is worth noting that, because this non-linearity takes such a regular form, we suspect that there may be more
optimal search strategies than a general non-linear optimization algorithm. We identify this as a topic for future
work.
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∗ The following rule is produced for all rules (xr, pr,‘>’): (proteins that de-
creased in response to the perturbation)

X[r]

(
T∑

t=0

S0[pr, t]−
T∑

t=0

SPxr [pr, t]

)
> X[r]εr

∗ The following rule is produced for all rules (xr, pr,‘=’): (proteins that did not
change in response to the perturbation)

X[r]

∣∣∣∣∣
T∑

t=0

S0[pr, t]−
T∑

t=0

SPxr [pr, t]

∣∣∣∣∣ ≤ X[r]εr

• Objective function: maximize
∑R

r=1 ωrX[r]

The choice to use εr rather than a strict inequality was based on the need to ensure that
the optimization algorithm did not satisfy the condition using a trivial difference (e.g., 10−20)
and the desire to incorporate support for changing the difference thresholds that signaled a
semi-quantitative change (recall the use of a similar ε parameter earlier in the definition of ∆i).

When all constraint weights are equal (e.g., ωr = 1 for all r), then the objective function
forces the optimization algorithm to find parameter values that satisfy the maximum number
of semi-quantitative constraints. Giving the optimization algorithm the flexibility to ignore
specific constraints is important since certain network structures might make satisfying some
semi-quantitative constraints impossible. In these cases, rather than failing outright, the opti-
mization algorithm simply satisfies all other semi-quantitative constraints.

The constraint weights, Ω = {ω1, ..., ω|Q|}, are used to bias the optimizer towards satisfying
certain perturbation constraints over others. This is useful when some experimental results have
higher confidence than others. In such cases, the more highly supported experimental result
constraints can be given larger weights in order to cause the optimizer to favor satisfying them
over other results in which the researcher has less confidence.

A web-based interface for this method is available at
http://www.ruthsresearch.org/monarch.

3 Results and Discussion
We evaluated our method’s performance on a series of perturbation experiments conducted
on the MCF-7 cell-line and published in [2]. In these experiments, a series of proteins were
targeted: EGFR (ZD1839), mTOR (rapamycin), MEK (PD0325901), PKC-δ (rottlerin), PI3-
kinase (LY294002), and IGF1R (A12 anti-IGF1R inhibitory antibody). In total, 21 different
perturbation experiments were conducted. In each, one or two of these molecules were inhib-
ited, after which EGF stimulation was applied. Phospho-levels for several proteins were mea-
sured at the end of each experiment: p-AKT-S473, p-ERK-T202/Y204, p-MEK-S217/S221,
p-eIF4E-S209, p-c-RAF-S289/S296/S301, p-P70S6K-S371, and pS6-S235/S236. The effect
of these perturbations on two phenotypic processes, cell cycle arrest and apoptosis, were also
measured.

For our analysis, we considered a subset of molecules involved in signaling directly down-
stream of EGFR; this network (hereafter, the EGFR network) is shown in Figure 1(a). Because
several of its members have known oncogenic properties, this network is of significant interest
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Figure 1: (a) A detailed diagram of the EGFR signaling network [5]. (b) The EGFR signaling network
largely restricted to the proteins inhibited or measured in the experiments reported in [2].

to the biomedical research community. Based on this subset, we considered all protein tar-
gets except IGF1R and PKC-δ—both of which are not recognized members of EGFR signaling
[6, 7]. This provided a set of 10 perturbation experiments (out of the 21 in [2]). We included
phospho-levels for all proteins measured. Since our current methods are focused on signaling
processes, we did not consider the two phenotypic processes since these are the result of a
combination of signaling, transcriptional, and metabolic processes.

The network in Figure 1(a) was reduced in order to minimize the number of proteins and
interactions in the model for which measurement information was not available. The motivation
for this is to limit the number of parameters whose values are unconstrained by observations,
which otherwise makes the parameter space much larger. Clearly, however, it is desirable to
support such unmeasured proteins in a predictive model. We identify the problem of extending
our methods to handle such unconstrained signaling members as a direction for future work.

The connectivity for the network induced by the measured molecules is shown in Figure
1(b). This reduced form of the EGFR network was obtained by keeping only proteins that either
(1) were targets, (2) were measured, or (3) were required to maintain connectivity among targets
and measured proteins in a non-trivial way. GSK3b was retained in order to ensure that TSC2
had at least one activating input. The molecules AA mTOR and AA GSK3b were added in
order to model significant sources of activity that reside outside of the EGFR network (GSK3b
activity is largely determined by environmental factors and mTOR is activated by Rheb which
maintains a high basal activity-level).

To test the predictive ability of our method, we performed a cross-validation procedure in
which the model parameters were trained using semi-quantitative data from three experiments.
The resulting model was then used to simulate the remaining seven perturbation conditions.
The predicted activity-levels from these simulations were interpreted as semi-quantitative ob-
servations (e.g., the perturbation caused an increase/decrease/no-change in p-AKT). These pre-
dicted observations were then compared to the true semi-quantitative changes in the data. The
correctness of the trained model was taken to be the percent of predictions that agreed with the
semi-quantitative experimental results.
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Figure 2: The agreement of one of the best trained model’s predictions with perturbation experiments
reported in [2]. Columns are the individual experiments, rows correspond to molecules. The columns
set apart to the far right constitute the three experiments used to train the model. In the perturbation
experiments matrix, a bold “x” indicates inhibited molecules. In the prediction agreement matrix, a
“X” square indicates that our method’s prediction for that molecule in that condition agreed with the
experimental measurement. Our method correctly predicted 85.7% (60 out of 70) of the test experiment
measurements.

Each different triplet of perturbation experiments yielded a different parameterized model
(the full set of training triplets and their predictive accuracy is provided in the Supporting
Information). Most triplet training sets yielded models with > 70% accuracy. The best trained
models obtained had 85.7%, 60 out of 70, predictive accuracy (70 data points = [7 observations
per experiment] × [10 different experimental conditions]). One of these models was selected
for further analysis and is shown in Figure 2. As a point of comparison, the predictive model
reported in [2] was trained and tested on this same data set. Though they trained their method
on 20 of the 21 experiments, their method’s ability to recall the correct semi-quantitative change
for a given molecule in a specific perturbation experiment was also 85.7% (60 out of 70). Thus,
despite using much less and only semi-quantitative interpretations of the experimental data, our
method was able to predict the behavior of individual molecules with a comparable degree of
accuracy.

The 10 disagreements between our method’s predictions and the experimental data may be
due to cell-specific signaling properties, some of which are suggested in [2]. It is worth noting
that the majority of errors occur along the c-Raf pathway (i.e., c-Raf, MEK, and eIF4E). Far
from being a random distribution of discrepancies throughout the network, the concentration
of inconsistencies in this pathway suggests that this part of the model is incomplete. Several
discrepancies arise for c-Raf under three different perturbations. c-Raf is known to be activated
by Ras and by various isoforms of PKC, none of which is PKC-δ [6, 7]. Nonetheless, Nelander
et al. detect a significant interaction between PKC-δ and c-Raf suggesting that, in the MCF-7
cell-line, this isoform may have some interaction with c-Raf. The absence of such a signaling
mechanism in our model could well account for the inconsistencies concerning c-Raf.

The discrepancies in the dynamics of eIF4E under the MEK/mTOR perturbation may be
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Figure 3: The EGFR signaling network model with relative interaction weights depicted by the width
of arrows.

related to the complicated mechanisms actually governing eIF4E. Experimental results report
eIF4E increasing in response to this perturbation. Regardless of parameter values, the con-
nectivity of our model cannot explain this since MAPK and mTOR are the only activators of
eIF4E activity. This suggests that the increase in eIF4E activity in response to this perturbation
is either the result of an entirely different mechanism or experimental error.

Both our method and the method in [2] generated discrepancies when predicting the re-
sponse of AKT to the EGFR/mTOR perturbation. Under the perturbation, AKT is reported to
have shown no change (0.0 fold increase). While it is certainly possible for AKT to have not
changed, it is also possible that the change (up or down) was sufficiently small as to not register
as a change during analysis: note that in [2], the AKT blots are quite dark and cover much of the
channel, factors that make discerning small fold changes more difficult. It is also possible that
AKT signaling occurs differently in the MCF-7 cell-line due to a known mutation in PIK3CA
(the catalytic subunit of PI3K) which causes MCF-7 cells to have higher basal levels of AKT
phosphorylation than normal cells [7].

Like AKT, the MEK activity inconsistencies under the EGFR/MEK perturbation may be
the result of the existence of some mechanism not present in our model. Typically, MEK is ac-
tivated through the pathway EGFR ; c-Raf ; MEK. However, MEK is observed to increase
while c-Raf activity drops, which cannot be explained by interactions in the model. Thus,
other cell-specific signaling pathways may dominate MEK’s activity under this perturbation.
Close inspection of the western blots for c-Raf in [2] also raise the possibility that the reported
changes are simply artifacts of the western blots themselves.

3.1 Interpretation of Interaction Weights
In addition to predictive capabilities, our method produces a model whose parameters have
been derived from experimental data. There are several aspects of the interaction weights
(shown in Figure 3) inferred for the EGFR network in the MCF-7 cell-line that offer insights
into cell-specific signaling properties. The four heaviest pathways in the network are:

• EGFR→ c-Raf→ MEK→ MAPK,
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• EGFR→ PI3K→ AKT,
• EGFR→ PI3K→ p70S6K→ pS6, and
• AA GSK3b→ GSK3b→ TSC2 a mTOR.

Notice that the first three constitute the three ways in which EGF signal enters the network
through the receptor. The interaction weights suggest a relative ordering in the strength of
these different signaling paths (listed by signaling endpoint): pS6 < AKT < MAPK.
Cell-specific behavior of AKT. Our model suggests that the EGFR ; AKT pathway is much
less significant than the c-Raf pathway. This is a surprising result when the general significance
of the PI3K pathway is considered. Our method appears to have identified a cell-specific at-
tribute, since MCF-7 has a PI3K mutation that induces the constitutive overexpression of AKT
[8]. Additional evidence in support of this hypothesis is that, in our model, AKT was given
a degradation rate slower than the network average degradation rate (0.53 compared to the
network-wide average degradation rate of 0.47, see Supporting Information) which will cause
AKT to maintain its activity-level for longer than other members of the network.

Also notice that the relative strengths of EGFR ; MAPK and EGFR ; AKT →
mTOR suggest a relative ordering of the negative feedback loops that regulate EGFR. Be-
cause the MAPK a EGFR interaction receives stronger signal than the p70S6K a EGFR
interaction, it is likely the case that in the MCF-7 cell-line,MAPK is the stronger negative reg-
ulator of EGFR. This coincides with the results in [2] in which they found significant evidence
of negative regulation of EGFR by MAPK, but no indication for that of p70S6K.
Tumor cell use of GSK3b. GSK3b participates in regulating a number of important cellular
processes including cell cycle and energy metabolism [9]. A mounting body of experimental
evidence also suggests that it may be a mechanism by which cancer cells satisfy their significant
energy demands. The strong activation of GSK3b (and the very strong inhibition of mTOR) in
our model may be an indication that MCF-7, a breast cancer cell-line, belongs to the class of
tumor cells that up-regulates certain cell processes partially through increased GSK3b activity.

The presence of these pathways in our model as strong chains of interactions both provides
additional evidence for the predictive capabilities of our method and demonstrates how the
parameters of the models can be used to gain insights into the system being studied. These
results also support the more general idea that semi-quantitative data alone is sufficient to gain
insights into the relative importance and strength of interactions in a signaling network.

3.2 The Importance of Connectivity and Parameters
Within the context of work such as [5] which made predictions using only network connectivity
(no parameters), an important question to answer is how much the presence of well-trained
parameters contribute to the accuracy of this method. In order to understand the contribution
of parameters and connectivity in this regard, we evaluated the accuracy achieved by a model
(1) with the correct connectivity, but random parameter values, (2) random connectivity with
trained parameter values, and (3) random connectivity and random parameter values. Correct
connectivity corresponded to the connectivity in Figure 1; random connectivity corresponds to a
network with all the nodes and edges in the correct network, connected in a randomized pattern
(with only node degree preserved). The algorithm used to randomize a network’s connectivity
is shown in Figure 4. Trained parameters refers to using the optimal training data set to select
good parameter values; random parameters refers to using parameter values selected within a
range of 0 to 1 for retention parameters and 0 to 15 for interaction weights (note that various
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PROCEDURE RANDOMIZE(V ,E)

1. D[v] = degree(v, E) for all v ∈ V

2. E′ = ∅

3. For each e ∈ E

• u, v, t = e

• Choose x ∈ V s.t. D[x] > 0
• D[x] = D[x]− 1
• Choose y ∈ V s.t. D[y] > 0
• D[y] = D[y]− 1
• E′ = E′ ∪ {(x, y, t)}

4. Return G′ = (V,E′)

Figure 4: The algorithm used to randomize the connectivity of a network G = (V,E).

Table 1: The contribution that correct connectivity and trained parameters make to overall model accu-
racy for the EGFR network.

Connectivity Parameters Accuracy
Correct Trained 85.7% (60/70)
Correct Random 59.3% (approx. 40/70)
Random Trained 21.2% (approx. 15/70)
Random Random 0.4% (approx. 3/70)

ranges for parameter values were tested with no change in the overall results we report next).
For each scenario considered, 1000 networks were constructed and their accuracy tested against
the 7 remaining data sets. Table 1 shows the outcome of the results.

The results of these experiments indicate that connectivity is, by far, the most significant
contributor to the accuracy of the model’s predictions. Even when random parameters are used,
predictions are correct nearly 60% of the time. Having trained parameters, however, does have
an impact on accuracy: evidenced by the fact that trained parameters increase accuracy by
another 25%.

What these results also show is that training parameters is not always susceptible to the
issue of overfitting. While there is always concern that a sufficiently complicated system can
always be parameterized to produce certain behavior, for the EGFR network considered here,
the degree of connective complexity could only be fit to 21% (approximately 15 out of 70 data
points) of the experimental data through training of parameter values.

4 Conclusions
The abundance of semi-quantitative experimental data (raw measurements that have been dis-
tilled into high-level behavioral trends or classes) both online and in individual labs as well
as databases of network topology (e.g., KEGG [10]) makes such data an appealing source of
information from which to build predictive models of biochemical networks. In this paper,
we have presented a novel computational method for building executable models of signaling
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networks. Furthermore, we have shown that the models produced from semi-quantitative data
have descriptive capabilities: the parameters derived from semi-quantitative experimental data
can provide insights into the underlying signaling mechanisms. Using our method, we have
provided further evidence that network connectivity (one kind of semi-quantitative data) is a
strong determinant of network dynamics. Taken as a whole, the work presented in this paper
suggests that models built from such data can provide profitable predictions. As a result, this
line of inquiry deserves further exploration and development.
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