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Abstract
More and more organisms get sequenced today. Based on the annotated genomes, the BioCyc collection (http://www.biocyc.org) contains 505 computationally-derived pathway-genome databases. Evaluating the validity of these predicted metabolic pathways has become an urgent need in order for scientists to focus on the pathways that are more likely to be true. Since many genomes have very limited literature, manual curation based method is not applicable. Here, we describe a Bayesian algorithm to calculate a Confidence score for  each predicted metabolic pathway by incorporating genome sequence, functional annotation, and gene expression data. 

Our algorithm uses the literature-based pathways for E. coli in the EcoCyc database. The positive training data are the known pathways; the negative training data are randomly generated combinations of genes. For each pathway, we calculate a Confidence score. We then evaluate the algorithm by determining its ability to distinguish the true pathways from the randomly generated pathways. The separation has an ROC area of 0.95. We also tested the classifier by generating a computed version of EcoCyc, meaning that we took the annotated genome of E. coli and used the PathoLogic to predict the pathways. The overlapping pathways between the real and computed EcoCyc are considered to be true positives, and the others are considered to be false positives or false negatives. The area under the ROC is 0.74 by using confidence scores only, and 0.85 by in conjunction with the previously developed Completeness score and Uniqueness score.

1 Introduction
The creation of a PGDB using PathoLogic (1,2) is frequently the first step in a thorough analysis of a newly sequenced organism’s metabolic pathways and assessing their role in the biology of that organism. Currently, there are 505 PGDBs in the BioCyc collection (http://www.biocyc.org). 

PathoLogic takes the inputs of an annotated genome and MetaCyc. MetaCyc is a database of nonredundant, experimentally elucidated metabolic pathways from more than 1500 different organisms. Currently, MetaCyc contains about 1200 metabolic pathways, and their associated compounds, enzymes, and genes. To predict the metabolic pathways for an organism, PathoLogic matches the names of protein products in the annotated genome against the names of enzymes in MetaCyc.  The protein products are assigned to the reactions catalyzed by the enzymes with matching names. The pathways in MetaCyc containing the reactions with assigned enzymes are imported into the new pathway-genome database for this organism (7-9).

The goal of PathoLogic is to generate hypotheses for researchers to explore, so its authors have tuned it to over-predict potential pathways, generating more false-positive predictions on the assumption that the predictions will be reviewed and revised by a scientist. It is desirable for biologists to know which predicted metabolic pathways are most likely to be present in the organism, so that they can focus on the pathways with high confidence and be cautious about the conclusions drawn from the pathways with relatively low confidence.

Paley et al developed Completeness scores and Uniqueness scores to evaluate the predicted metabolic pathways(3). For a predicted metabolic pathway, based on the total number of reactions in the pathway as it occurs in MetaCyc, Completeness score is the proportion of reactions in the pathway for which enzymes are assigned, and the Uniqueness score is the number of unique reactions in the pathway, not shared by other pathways in the organism. However, the approach taken by Paley et al does not consider the biological relationships among the enzymatic genes in a pathway. For example, are the genes assigned to be in the same pathway close on the genome, belonging to the same operon, and/or sharing similar transcriptional profile? In addition, Paley et al does not use a probabilistic framework. 

Green et al developed a pathway hole filler program (4). It identifies candidate enzymes for filling pathway holes, i.e., the reactions in the predicted pathways without enzymes assigned. The program uses a set of sequences encoding the required activity in other genomes to identify candidate proteins in the genome of interest. Green et al further extended the pathway hole filter program by adding the genomic context information, including the candidate enzyme being in the same operon or the same protein complex as another gene in the pathway (5). However, Green et al does not use co-expression as a feature, and their primary goal is to identify missing enzymes instead of evaluating predicted metabolic pathways.

Popescu et al used an Expectation-maximization algorithm to assign each gene to the most likely pathways instead of all the pathways that might involve these genes (6). To infer the most likely assignments, and estimate the affinity of each gene with the known cellular pathways, the authors used expression data, database annotations and similarity data.  Even though assigning genes to the most likely pathways and evaluating the predicted metabolic pathways are related goals in terms of better predicting metabolic pathways, they are still different goals from those addressed here.

Chang et al used a second-order differential equation approach to infer signal transduction pathways from microarray data (7). Potentially, this method could be used in evaluating predicted metabolic pathways too. However, they did not use genomic data or functional data.
In this paper, we are aiming to calculate a Confidence score that reflects how likely a predicted pathway to be present in an organism by incorporating evidence from multiple sources such as genome sequence, functional annotation, and gene expression data. We refer to the method we developed as the “Confidence score”, which will be described in this paper. 
First we will describe the Confidence score method. Second we will compare the ability of the Completeness score with the Uniqueness score and the Confidence score developed by Paley et al to correctly determine whether particular pathways are present or absent in an organism. Finally, we will combine the Completeness score, the Uniqueness score, and the Confidence score, and evaluate the accuracy of the combined scores.
2 Methods
We will calculate Confidence scores for the following three relationships:

1) A pair of genes belong to the same pathway

2) A gene is correctly assigned to a pathway

3) A predicted pathway actually exists in the organism

Although 3) is our main interest, the calculation of 3) and 2) is based on the scores of 1). We will describe 1) in much greater detail. 
2.1 Confidence score that a pair of genes belong to the same pathway

2.1.1 Training data sets

1) Positive training data set are pairs of genes that belong to the same metabolic pathways in EcoCyc.

2) Negative training data set are pairs of genes that do not belong to the same pathways in EcoCyc.
2.1.2 Testing data sets

For building the classifier to predict whether a pair of genes belong to the same pathway, the training data sets are also used as testing data sets. There is a concern that we are using the same data both to train the classifier and to test it. Ideally, we would have separate training and testing data, or we could use a cross-validation method. However, because we have many thousands of observations in the data set, and are only estimating likelihood ratios for a small number of features, using the same data sets for both training and testing will be quite accurate.  
2.1.3 Features and their data sources 

1) The intergenic distance between two genes. The hypothesis is that genes in the same pathway are closer to each other than the genes not in the same pathway. 

2) The correlation coefficient between the expression data of the two genes. The hypothesis is that genes in the same pathway are more co-expressed than the genes not in the same pathway. The data sets are from the ASAP (a systematic annotation package for community analysis of genomes) database from University of Wisconsin - Madison (9)， consisting of 50 arrays under a wide range of conditions.
3) Whether or not the two genes belong to the same functional group, such as Monica Riley’s functional classification for gene products in E. coli (10). For the definition of “same functional group”, we borrowed what Romero et al used in their work of operon prediction (11). 

4) Whether or not the two genes belong to the same operon. The hypothesis is that genes in the same pathway are more likely to be in the same operon than the genes not in the same pathway. If the operons are known, we will use the known operons; otherwise, we will use the operons predicted by PathoLogic (12).

5) Whether or not the two genes belong to the same multimeric complex. The hypothesis is that genes in the same pathway are more likely to be in the same complex than the genes not in the same pathway.
6) Features based on comparative genomics:
· Phylogenetic Profile (PP): co-occurrence or absence of pairs of nonhomologous genes across genomes
· Rosetta Stone (RS): two proteins expressed separately in one organism can be found as a single chain in the same or a second genome.
· Gene Neighbor (GN): conserved adjacency of two genes across genomes.
The three features were described by Bowers and colleagues (13) and are components of the Prolinks database of protein functional linkages derived from co-evolution. The Prolinks database contains the calculated score (between 0 and 1) for each of these features for each pair of genes in an organism, where the score is a measure of the degree of functional linkage between the pair of genes, based on co-evolution. For my analysis, we downloaded the Prolinks score for each feature for all the pairs of genes in E. coli that are in my training and testing data sets. 
2.1.4 Evaluation methods for the classifier 
                  The following three methods were used:
1) Calculate differences in mean of the Confidence scores for pathways and/or gene pairs in the positive and negative data sets.

2) Perform a T-test on the means

3) Calculate the area under the ROC curve
2.1.5 Building the Bayesian classifier
The Confidence score that a given gene pair is in the same pathway is calculated as follows.

2.2 Confidence score that a gene is correctly assigned to a pathway

To evaluate the Bayesian classifier for whether a gene belonging to a pathway, we generated a negative data set consisting of “random pathways”, that is, random gene sets with size matched to the actual pathways in EcoCyc. In each random pathway, none of any two genes belong to the same pathways or the same functional group in EcoCyc.

The Confidence score that an individual gene belongs to a pathway is calculated by taking the average of that gene’s pair wise scores with all the other genes predicted to be in that pathway.  

We then applied the Bayesian classifier to this set of random pathways and calculated the Confidence scores for all pairs of genes in each random pathway, and Confidence scores that each gene was correctly assigned to the pathway. 

2.3 Confidence scores for a pathway to be present in an organism

The Confidence score for a pathway is the average score of the scores of all the genes in that pathway.  These analyses all use a negative treating set of randomly generated pathway gene sets described in the previous section. 
3 Results
3.1 Log Likelihood tables

To create and evaluate the Bayesian classifier we created a training data set consisting of positive training examples (pairs of genes that belong to the same pathway) and negative training examples (pairs of genes that do not belong to the same pathway). We calculate the Log Likelihood Ratios of positive training data to negative training data for the features (as described in the tutorial on Bayes’s classifiers above). Table 1 and Table 2 show the calculated Log Likelihood Ratios for the features.
The LLRs the probability of a pair of genes belonging to the same pathway or not is influenced by the particular value of the features.  Then we calculated the Confidence scores for a pair of genes belonging to the same pathway based on the formula on page 5. 
3.2 ROC areas of distinguishing pathways and sensitivity analysis
We calculated Confidence scores for the pathways in the positive and negative testing data sets.  The positive testing set is all the pathways in EcoCyc, and the negative testing set consists of consisting of “random pathways”, that is, random gene sets with size matched to the actual gene set. In each random pathway, none of any two genes belong to the same pathways or the same functional group in EcoCyc. Bayesian classifier is applied to the testing data sets. We then calculated the Confidence scores for all pairs of genes in each pathway in the testing data,  then the Confidence scores for whether a pathway is present in the organism is calculated based on the methods described in 2.2 and 2.3.  

Table 2 shows the ROC area for the Confidence score using all the features and then using one feature at a time. Using all features, the ROC area is 0.91. Examined one feature at a time, the functional group feature has the highest ROC, 0.8, followed by co-expression at 0.63.The relatively low ROC for the operon and protein complex features is due to the relatively small number of times in which pairs of genes are in the same operon or same complex, compared to the large majority of times in which they are not in the same operon or same complex. The relatively rare occurrences mean that these features contribute to the ability to discriminate genes in the same pathway from genes not in the same pathway in a small proportion of cases.
In fact, the functional group feature in conjunction with any combinations of other features gives ROC areas around 0.9. Excluding the functional group feature, the ROC area for combinations of other features is in the range of 0.55 to 0.66 (data not shown). Without the functional group feature, distance and operon features are the most likely used features, giving an ROC area of 0.57 without coexpression and an ROC area of 0.65 with coexpression.  If we filter out the genes with expression of low variability across the experimental conditions, in the case of excluding functional group feather, the ROC area improved from 0.55- 0.66 to 0.8. Using Prolink features improves the ROC areas slightly when functional group feature is excluded. 
3.3 Combining the Completeness, Uniqueness and Confidence scores 

As mentioned above, the Confidence score method we developed extends previous work by Riley et al that gave evidence for a pathway in terms of the completeness and uniqueness of the reactions in the pathway. “Completeness score” is the proportion of reactions in the pathway for which enzymes are assigned as for a pathway, and the “Uniqueness score” is the number of unique reactions in the pathway (reactions that are not shared with any other pathways).

In the section, we compare the ability of the Completeness score, the Uniqueness score, and the Confidence score to correctly determine whether particular pathways are present or absent in an organism. Finally, we combine the Completeness score, the Uniqueness score, and the Confidence score, and evaluate the accuracy of the combined scores.

3.3.1 Generation of a new test set

In the analysis above, the negative testing data set is by randomly generating pathways. In this section, we generated a new test set as follows. We applied PathoLogic to the annotated genome of E. coli K12 to produce a computed version of EcoCyc (Computed EcoCyc). The Computed EcoCyc contained 220 predicted pathways. Of these 220 predicted pathways, 130 pathways are known to be present in E. coli (true positive), while 90 of the predicted pathways are not present (false positive). In future, this is the procedure that researchers will use to generate Pathway Genome Databases for new organisms, rather than randomly generating pathways. Thus, using these pathways gives a more realistic, and more stringent, test set to evaluate the Confidence score algorithm.

In the analyses below, the 130 pathways known to be present in E. coli (true positive) comprise the new positive test set, while the 90 predicted pathways that are not present in E. coli (false positive) comprise the new negative test set.

3.3.2 Accuracy of the Completeness score, the Uniqueness score, and the Confidence score separately in the new test set
Table 2 shows the ability of the three scores to classify pathways. The area under the ROC curve for the Completeness score is 0.65, for the Uniqueness score is 0.64, and for the Confidence score is 0.74. 
We used four methods to combine the Completeness score, the Uniqueness score, and the Confidence score: mean of the three score, median score, maximum score, and minimum score. Other combining methods are possible. Table 2 shows that we get best results by combining the Completeness score, the Uniqueness score, and the Confidence score. Specifically the median of the three scores gives an area under the ROC curve of 0.85.

3.3.3 Accuracy of the combined scores leaving out selected features
For some organisms, some features that we use in the Confidence score calculator, such as gene co-expression and/or functional group may not be available. We examined the ability of the Confidence score to correctly determine whether particular pathways are present or absent in an organism when these features are not available in the new test data set. We also examined the classification accuracy of the combined Completeness score, Uniqueness score, and Confidence score when these features are not available.

Table 3 shows that the median of the three scores, not using the functional group features, gives an area under the ROC curve of 0.83. This ROC area is not statistically significantly different from the results including the functional group feature. While the ROC area for the Confidence score declines slightly, the combination of the three scores is robust. Table 4 also shows that the median of the three scores, using neither gene co-expression nor the functional group features, gives an area under the ROC curve of 0.85. This ROC area is not statistically significantly different from the results including gene co-expression and the functional group feature. While the ROC area for the Confidence score again declines slightly, the combination of the three scores is robust.

Overall, these results indicate that the combination of the Completeness score, the Uniqueness score, and the Confidence score is able to correctly identify a large proportion of the predicted pathways that are present or absent in the organism (ROC area of 0.85) and is effective even when some data are not available for the particular organism.

4 Discussion
We have developed an algorithm that calculates Confidence scores that (i) pairs of genes belong to the same pathway, (ii)  individual genes belong to a given pathway, and (iii) predicted pathways exist in an organism. We developed and tested the algorithm using E. coli pathways in EcoCyc. For EcoCyc, the areas under the ROC curves indicate that the Confidence scores are effective at discriminating correct pathways from incorrect pathways. We applied the algorithm to S. coelicolor data in StreptoCyc, a PDGB that we created. For StreptoCyc, the areas under the ROC curves indicate that the Confidence scores for pathways predicted by PathoLogic are significantly higher than the Confidence scores for pathways predicted by randomly combining genes (data not shown). The Confidence score algorithm can potentially be applied to predicted genetic pathways in the existing 160 PDGB’s for which the necessary feature data are available.

Based on the sensitivity analysis, the functional group feature gives the largest contribution to the ROC area followed by co-expression and the comparative genomic features. Functional group feature might not to be commonly available. The gene expression filter is particularly valuable when the functional class is not available. When we use only the features that are available for any organism for which the sequence is known, namely, distance, operon, comparative genomic features, plus the Uniqueness score and the Completeness score that are available in the prediction reports from PathoLogic, the ROC area is quite high (0.85 for E. coli).
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Table 1a: Log Likelihood Ratios (LLR) for the features in the training data set

	Feature
	Category
	LLR

	Distance (nucleotides) (discounting operons)
	0 - 5000
	3.12

	
	5000 - 10000
	1.66

	
	10000 - 15000
	0.18

	
	> 15000
	-1.58

	      Same operon?
	1
	10.02

	
	0
	-0.16

	Same protein complex? (discounting operons)
	1
	6.39

	
	0
	-0.01

	Same functional group (discounting operons)
	1
	2.50

	
	0
	-1.49

	Pearson correlation coeffcient for co-expression
	0.9 ~ 1.0
	5.29

	
	0.8 ~ 0.9
	2.78

	
	0.7 ~ 0.8
	1.52

	
	0.6 ~ 0.7
	1.08

	
	0.5 ~ 0.6
	0.84

	
	0.4 ~ 0.5
	0.55

	
	0.3 ~ 0.4
	0.30

	
	0.2 ~ 0.3
	-0.04

	
	0.1 ~ 0.2
	-0.16

	
	 0.1~(-0.1)
	-0.31

	
	(-0.2) ~ (-0.1)
	-0.42

	
	(-0.3) ~ (-0.2)
	-0.60

	
	(-0.4) ~ (-0.3)
	-0.76

	
	(-0.5) ~ (-0.4)
	-0.61

	
	(-0.6) ~ (-0.5)
	-0.52

	
	(-0.7) ~ (-0.6)
	0.09

	
	(-0.8) ~ (-0.7)
	0.40

	
	(-0.9) ~ (-0.8)
	1.29

	
	(-1.0) ~(-0.9)
	1.29

	
	
	


Table 1b: Log Likelihood Ratios for each Prolinks feature in the training data set
	Prolink scores
	RS
	GN
	PP

	< 0.4
	-0.051
	-0.202
	0.084

	0.4 - 0.5
	0
	3.392
	3.104

	0.5 - 0.6
	4.755
	5.267
	3.907

	0.6 - 0.7
	3.807
	6.087
	4.392

	0.7 - 0.8
	4.858
	5.7
	2.807

	0.8 - 0.9
	4.322
	6.426
	4.322

	0.9 - 1
	2.322
	0
	5.358


Table 2: Accuracy of the individual and combined scores to separate the positive and negative pathways in the new test set

	scoring methods
	ROC areas

	Confidence score
	0.74

	Completeness score
	0.65

	Uniqueness score
	0.64

	Median of all three scores
	0.86


Table 3: ROC areas for Confidence score calculated without the functional group feature, or without neither functional group nor coexpression 

	scoring methods
	ROC

	Confidence score without the functional group feature
	0.65

	Median of three scores (Confidence score without the functional group feature, Completeness score, and Uniqueness score)
	0.84

	Confidence score without function and co-expression
	0.65

	Median of three scores (Confidence score without the functional group feature and coexpression, Completeness score, and Uniqueness score)
	0.85








Confidence score = {LR (prior) + sum (LLRs)} * 100  
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